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PREFACE

This paper constitutes a deliverable to Task T-R2-597.01, "SDI Battle Management/
C3 Studies" in accordance with Section 5.0, "Schedule," of the task order dated 1 October
1988. It presents an overview of tracking methods and issues writen for the nonexpert,
and an overview of tracking algorithm architectures. We summarize the algorithms
surveyed to facilitate the understanding of survey responses and underscore the algorithms'
general features, information flow, and calculational techniques.

The paper endeavors to serve both the nonexpert and the expert. For the nonexpert,
the survey of methods explains tracking problems and solutions to provide both a summary
of the state of the art and the technical background for the algorithm survey. For the
expert, the survey of algorithms provides a catalog of approaches and results in tracking
and a community of designers with whom to interact.
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EXECUTIVE SUMMARY

A. ALGORITHM SURVEY

Table 1 provides one summary of the 19 algorithms surveyed in this report. The
general information about an algorithm that we felt should be immediately available
includes: What phase of a ballistic missile's trajectory does the algorithm track?; Does the
algorithm use single or multiple sensors?; Does it track clusters of objects as well as
individual objects?; Does the algorithm rely on track information being handed over by
another source? and What is the status of the algorithm? Other information of a more
technical nature is provided in Table 2: In what manner does the algorithm share
information among multiple sensors?; Does the algorithm perform measurement-to-track
association by assignment or multiple hypotheses? For a detailed description of these terms
and summary of algorithms please see Chapters 2-4. ‘

The tables illustrate that tracking algorithm activities, at least those we survcyed, are
concentrated in boost and midcourse phases, mostly multiple sensor tracking of individual
objects. In addition, a few organizations are developing algorithms for tracking closely
spaced objects or clusters. The manner in which the tracking information is processed
varies, as can be seen from the different types of algorithm architectures implementcd.
Last, and most important, both major approaches to the association problem are being
addressed.

B. CRITICAL ISSUES!

SDI tracking algorithms will face demonstration and evaluation milestones in the
near future. Solutions to the most difficult tracking problems considered both in isolation
and as part of a surveillance system remain to be successfully demonstrated. In particular,
the future activities in SDI tracking algorithms must focus on five critical issues:

1 This section draws heavily on discussions by the SDI Panels on Tracking and from Drummond, O.E.,
"Multiple Target Tracking Lecture Notes,” 18 March 1988, Technology Training Corporation,
Torrance, CA. ‘ .
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Table 1.

Phase Sensor Number Subject Status
| oot | oo [tomia | sirgo | e | abost | gn | conapil | Ppasplt | Eenehe

Advanced Systems Architecture v v N N N N
Alphatech - N) N} N N
Ball S).(stems Englneering N N/ N v
Caltech/Jet Propulsion Laboratory N} N N N
ESL - N N NV J
Hughes Alrcraft Company N N} N N ]
Lockﬁéed Missiles and Space Company v v N} N N N}
MIT Lincoln Laboratory v N N N J
Mgbormell 'D_ouglés Space Systems N N N N}
MindGate Technologles v N} N N N
MITRE: Ballistic Tracker v N J N
leRE: Boost-phase Tracker v N N - N}
MITRE: Multiple Sensor/Target v , N y ]
Raytheon: BMEWS Upgrade v N N N N|
Raytheon:. Ground-Based Radar v v v N N
Space Computer N} v v | N N} N]
Systems Control Technology N v v N N
TITAN Systems ' N

| w v ~ v \ v
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Table 2.

Track nitaion | porin Avchiteturo [ Algorhm Archtestoro | As500aion | Track
cold | wam| o ol w0 | n]m]v |Assignment Hy“;‘:::f’;:ls Zz’:::;‘:
Advanced 'Syst_em_s Architecture ) v v v
Alphatech | N N 21212 v v
“Ball Syétems Enginé_edng v ? v
CaltectvJet Proputsion Laboratory v | v v
ESL ? v v
Hughes:_Airc_r_aft c{).mpany v VA IRV IRV IR ? ?
Lockheed M"ssiles.and Space Company v v v N v
MIT Lirleoln" Laboratory v v ) v
McDonnell Doiglas Space Systems ) v N ]
MjndGate Technologies v v v
MITRE: Ballistic Tracker. v v v
MITRE: Boost-phase Tracker v v N v
MITRE: Multiple Sensor/Target v ) ) v
Raytheon: BMEWS Upgrade v v v v N
Flajtheon: Ground-Based Radar v ‘l v v v N
Space Computer \/ \1 :
Systems Control Technology v v
TITAN Systems '
TRW v v ) )
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*  Cluster tracking

e  Scan-to-scan association

«  Performance evaluation and prediction methods

e Testbed Tt

»  Signal processing.

1. Cluster Tracking |

Cluster tracking methods are currently under dcvelopmént at a few organizations, as

demonstrated by Table 3.

Table 3.

Cluster Tracking Activities

Organization

Description of Algomhm

Advanced Systems Architectures

Tracks spawned from a common source are combined to
form a cluster track. Cluster tracks are also formed from
objects with similar tracks. No mention of unresolved
objects.

Hughes Aircraft Company

State-of-the-art multiple sensor tracking of unresolved or
resolved clusters of objects. Group-to-object transifion
included.

Lockheed Missiles & Space Company

State-of-the-art multiple sensor tracking of unresolved or
resolved clusters of objects Group-to-object transition
included.

MIT Lincoln Laboratory

| Individual object tracks for members of a group of closely

spaced objects (CSO) are initiated from a cluster track that
is generated by the edges of the cluster.

MindGate Technologies

Pattern matching of clusters of co-moving objects.

Space Computer Corporation. - -

'_Track-before~detect approach for determining clusters in
velocity space. Potentlally very useful as a method for

performing computationally affordable individual object
track initiation.

TRW

Cluster tracking to implement a pattem-matchmg track

initiation a Lmhm

The many concepmal difficulties in approaches to cluster traclcmg are just beginning
to be addressed. Much more work in this area is needed. Howcver promising they may
be, none of the algorithms listed in Table 3 have been demonsuated to be a solution to the
clustér tracking problem. The SDI Panels on Tracking are actively pursuing this issue.

S-4
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Individual object tracking will be impossible, too difficult, or too expensive to be
practical, or not necessary during portions of the ballistic missile defense engagement.
Shortly after deployment from post-boost vehicles, reentry vehicles and decoys may be so
closely spaced as to be unresolvable to tracking sensors presenting as point or extended
objects. Even when resolved, RVs and decoys could be so closely spaced that the
computational resources required for individual object tracking would be prohibitively
expensive because of scan-to-scan association difficulties. A sensor's ability to resolve
objects depends on more than its optical qualities and signal processing. Resolution is also
a function of the viewing geometry and range. For this reason, as the sensors move along
their orbits, the closely spaced objects may unresolve as well as resolve. Therefore, cluster
tracking will pléy a very important role in any tracking algorithm architecture.

There are critical operational requirements for maintaining tracks on individual
targets, including discrimination of RVs from decoys, threat assessment, and attack
execution. As the threat resolves, cluster tracks spawn individual object tracks, that is,
individual object tracks are initialized from the cluster track. Therefore, cluster tracking

should be evaluated, in part, on the quality of the initial estimates for the spawned
' individual object tracks. ‘ -

2. Scan-to-Scan Association

There have been no full-scale demonstrations and evaluations of the two principal
competing conceptual approaches to this problem. Much more work is needed in this area.

The great challenge of SDI tracking results from the high density of target and
clutter observations reporting out of the sensor's signal processor. A high density means
that the association of tracks to measurements cannot be made without significant
uncertainty or error. At large but achieveable computational cost, tracks can be assigned to
one scan's worth of observations in an optimal fashion. Incorrect assignments can lead the
tracking system into estimating the'quality of track predictions as better than they actually
are. Since track prediction affects the assignment of weapons to targets and the ability of
weapons to autonomously locate their targets, poor performance in this regard would have
critical implications for the management of the ballistic missile defense engagement.
Misassociations may also result in the loss of track as the filter follows an incorrect
sequence of observations. '

Misassignments that may occur in a high-density environment may result in tracks
based on measurements from more than one target. Impure tracks over the course of many

S-5



scans randomly mix measurements from several targets. In this case, any phenomenology
used to discriminate between classes of objects, such as RVs and decoys, that depends on
repeated measurements will be of limited usefulness. In other words, poor track purity
performance because of misassignments limits multiple scan discrimination techniques.

Assignment algorithms are computationally affordable but may not provide the
necessary performance. On the other hand, multiple hypothesis algorithms should provide
superior performance but their computational requirements may not be affordable.
Rigorous, full-scale testing is critical.

3. Performance Evaluation and Prediction Methods

Much more work is needed in developing methodologies for fairly scoring tracking
algorithms that use different conceptual and mathematical approaches. Until recently, there
was no such scoring methodology. One scoring methodology has been agreement
developed by the SDI Panel on Tracking Parameters. Development of appropriate scoring
criteria must keep pace with new approaches to tracking. o

The complexity of complete SDI tracking algorithms is such that analytic track
performance predictions do not exist. More work must be done in this area. The only
alternative is to run computer simulations, which are costly and sometimes difficult to
interpret.

Much more work also must be done on determining the required computational
resources of tracking algorithms before expensive simulations are run. Computer
throughput and memory demands will play a critical role in selecting tracking algorithms.

4. Testbed

There is a critical need for a portable testbed that can be used in the development of
tracking algorithms, not just for evaluation purposes. Contractors are naturally reluctant to
bring their algorithms to a central testbed facility during development to avoid revealing
proprietary details and embarrassing algorithm performance, which is to be expected during .
development.

~ The portable testbed should consist of a complete set of library modules for those
functions that support a tracking algorithm. Library modules would consist of accepted,
standardized models for such things as possible threat trajectories and signatures,

S-6



background signatures, and signal processing.2 The tracking algorithm designer should be
able to select individual modules to plug into his sensor system in support of developing a
tracking algorithm.

A modest step in this direction is threat data developed by members of the SDI
Panel on Track Parameters that has been distributed to 13 organizations by IDA. A second
generation of threat data is nearly ready for distribution. An approved signal processing
model could be used to supply measurements for the tracking algorithm. In particular,
realistic, accepted models of background clutter in which tracking algorithms are expected
to operate need to be made available as soon as possible. |

Currently, each algorithm design team must provide their own testbeds. This is
done at great cost. The government pays for the redundant effort of contractors developing
their own testbeds with their own supporting models.

The efforts of some contractors could be greatly handicapped by poor fidelity
supporting models. This could, perhaps, prevent good ideas from getting adequate testing.
In this case, the government would suffer the opportunity cost of losing a good idea.

The government pays an additional cost in that low fidelity support function models
used by tracking algorithm designers may lead to misleading performance results that might
not be discovered until late in the development cycle and at the great expense of full-scale
computer simulations.

A portable testbed is critical for the ability to run full-scale simulations during
development to provide tracking algorithm designers an opportunity to study the problems
they face and to adequately exercise different approaches.

5. Signal Processing

There may be large potential for tremendous growth in tracking performance by
better or new, innovative approaches to signal processing. For instance, if a signal
processor could greatly decrease the high density of observations passed to the SDI
tracking system by removing stars, persistent background, and decoys, the processing load
for a space surveillance and tracking system would be substantially lessened. Although
such an approach has been hypothesized, we have seen no evidence of such a bulk filter.

2 In addition, modules with alternative levels of fidelity will expand the usefulness of the testbed to
various purposes and stages in the development process.
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- ~Signal processing is critical to discrimination.. Measurements. in high-density"

environmehts can be corrupted: as signals from'neighibors are'mixed together. Impure
measurements, like impure tracks, limit discrimination. ’

Signal processing liés at-the heart of the cluster t'ra&:kihg'or"cl'osely—sPaced-objcct
problem. Much of thc work in thxs area is highly proprietary and was not available to us.

‘ New mnovauve s1gna1 processmg approachcs are under’ mvesngauon One in "
parucular known as a veloc1ty ﬁlter, may prov1dc a computanonally affordable approach to’

track initiation in the dense SDI cnvnomncnt that 1s otherwmc hu gely cxpcnsxve because of
the scan-to-scan association problcm Veloc1ty filtefs are one example of a class of
approaches,. known as track-before-detect, thit have beén‘found to-hold great potential for
tracking low observablé objects. : <



I. INTRODUCTION

The Institute for Defense Analyses (IDA) was tasked by the Strategic Defense
Initiative Organization (SDIO) to monitor, evaluate, and facilitate the development of
tracking algorithms. Among other things, IDA was asked to survey tracking algorithms
under development for or applicable to SDI in order to ascertain the status of activities in
this critical area. This paper reports the results of IDA's survey.

As part of IDA's overall task, three working panels were established to provide a
forum for addressing problems in tracking. These panels, which meet bimonthly for three
consecutive days, are staffed by tracking algorithm designers from Federal Contract
Research Centers, many companies, and each of SDI's sensor program elements. The SDI
Panel on Critical Issues in Tracking developed a common survey'format for describing
tracking algorithms to ensure that key questions were answered in a succinct manner and to
simplify the process of understanding the details of the activities. One part of that format
was a decomposition of all tracking algorithms into architectures consisting of four-track
initiation and four track maintenance generic processing chains. It was expected that all
responses would conform to the survey format and algorithm architectures.

To a large extent, the accomplishment of the survey was dependent on the tracking
algorithm community responding to IDA's request for information. Given that replying to
such a survey is not a contractual obligation, the number of answers received is gratifying
and IDA expresses its appreciation to those who took the time to carefully and thoughtfully
respond. This survey report does not contain algorithms for some SDI development efforts
because of classification or proprietary restrictions.

The survey benefited greatly from the collective expertise of the SDI Panels on
Tracking. A list of the contributors from these panels is included in Appendix C. The

-3 The SDI Panel on Tracking Parameters, the SDI Panel on Critical Issues in Tracking, and the SDI

Pancl on Advanced Concepts. For a description of their activities see the Proceedings of the SDI
Panels on Tracking.




survey also benefited greatly from three useful expositions on multiple-target tracking.4
The reader desiring more depth on this subject is directed there.

The paper consists of an executive summary, four chapters, and three appendices.
Chapter 2 presents an overview of tracking methods written for the non-expert. Chapter 3
presents an overview of tracking algorithm architectures developed by the SDI Panels on
Tracking. Chapter 4 contains summaries of the surveyed algorithms that are intended to
facilitate the understanding of the unprocessed responses and underscore the algorithms'
general features, information flow, and calculational techniques. The survey form and the
responses can be found in the appendices. Our conclusions and recommendations are
contained in the Executive Summary.

The paper endeavors to serve both the nonexpert and the expert. For the nonexpert,
the survey of methods explains tracking problems and solutions to provide both a summary

of the state of the art and the technical background for the algorithm survey. For the

expert, the survey of algorithms provides a catalog of approaches and results in tracking
and a community of designers with whom to interact.

4 Samuel S. Blackman, Multiple-Target Tracking with Radar Applications; Artech House, Inc., 1986;

" O.E. Drummond, "Multiple Target Tracking Lecture Notes,” UCLA October 1985, Revised
18 March 1988, Technology Training Corporation, Torrance, CA.; and Yaakov Bar-Shalom and
Thomas E. Fortmann, Tracking and Data Association, Academic Press, Inc.
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IL. OVERVIEW OF TRACKING METHODS

Before summarizing the results of the algorithm survey, it is worthwhile to provide
the nonexpert reader with an overview of tracking methods. We begin by explaining the
tracking process in a general, introductory fashion to acquaint the reader with terminology
and fundamental concepts. The difficulties of SDI tracking are described next. Finally, the
principal tracking approaches are described in depth but at a level appropriate for the
nonexpert.

A. INTRODUCTION

1. What is Tracking?

A track is an estimate, based on sensor measurements, of the kinematic components
(position, velocity, and acceleration) that describe the motion of an object. These
components are collectively referred to as the state of the object; the state's evolution in
time describes the object's motion. Therefore,-a track is an estimate of the object's state
derived from sensor measurements of it.5

The tracking process as generally practiced today consists of the interrelated
functions of association and estimation. A (radar, optical, acoustic) sensor system
uses its observations of an object's reflections or emissions to derive measurements of
the object's state. The portion of the state that is measured depends on the sensor type.
For instance, a passive optical observation cannot provide range measurements because it
relies entirely on emissions. In general, the measurements are some (not necessarily linear)
function of the state.

Association is the decision process of linking observations or tracks of a
common origin. Links can be made observation to observation, observation to track, or
track to track. Observations taken at (nearly) the same time by multiple platforms or from
one platform's different sensor systems can be linked together as assumed to have a
common origin for the purpose of sensor fusion.

5 The state could also include quantities other than kinematic components, such as temperature.
-1



A sensor's observations can be linked across frames® to form a time sequence of
measurements. This sequence without further processing is a type of track, one that lacks
the ability to predict the future and is limited to the measurements rather than the full state.
A time sequence of linked observations, however, can be processed, that is, statistically
filtered, to transform a measurement sequence into an estimate of the full state's evolution
as a function of time. Statistical filtering is the estimation part of tracking.

In the next section we will discuss in detail the Kalman filter, which currently is the
most general and powerful track estimation method commonly used. Here it suffices to
note that the Kalman filter refers to the algorithm that produces the statistical estimate of the
state and covariance.

A major task in tracking algorithms is the linking of observations to tracks. A gate
is a region in the sensor's field of view, determined in part by the prediction from the
Kalman filter, where the subsequent track measurement is likely to fall. As a rule, only
observations in the gate are considered for association with that track, thus greatly reducing
the number of computations. Often in SDI applications there will be more than one
observation within a gate and, therefore, several possible observation-track pairings. Since
the output from a Kalman filter participates in determining the size of the gate, the
association and estimation functions are interrelated. We will discuss this further below.

Last, as with observations, tracks from multiple sensors can be linked as assumed
to have a common origin, also for the purpose of sensor fusion.

2. What are the Difficulties in SDI Tracking?

The essential difficulties in SDI tracking are the large number of objects to be
tracked, the high density of observations, and the inability of sensors to resolve individual
objects from closely spaced neighbors.

The massive number of objects that have to be tracked in SDI scenarios requires
huge computing resources. To understand this, consider the computational burden from
processing one Kalman filter for each object being tracked. Since all the tracks update on
each frame, every few seconds the information processor must perform the necessary,
highly nontrivial, update calculations of the Kalman filter. We see that this computer

6 A frame is defined as one data collection survey of the surveillance region. In this form, the definition
is independent of whether the sensor surveils by mechanically sweeping the field of view with detectors
or surveils electronically with staring detectors.
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burden scales linearly with the number of tracks. Faster, more efficient Kalman filters can
mitigate this huge computer load. Unfortunately, this is the least of the difficulties.

In common SDI scenarios, the density of observations originating from targets and
clutter is likely to be high. Recall from our discussion above, the observation-to-track
association function establishes a gate in the sensor's field of view around where it expects .
to find the observation for the track. A high density means that there is likely to be more:
than one observation in a gate. When this occurs, the tracking system cannot know with -
certainty which observation if any originates with the target. Handling this association
problem is the most computationally intensive aspect of tracking. Incorrect
observation-to-track association can lead to poor track performance, loss of
track, and tracking errors far worse in reality than those predicted by the:
Kalman filter. This is the most critical SDI tracking difficulty.

One approach to managing the high density threat is to temporarily forego tracking
individual targets and rely instead on tracking the group or cluster in' which they are
traveling. There are substantial computational advantages to this approach. A track can be
established for some carefully chosen parameters of the group, such as the group centroid
and extent. This saves on the computer resources required when many targets are so close
that it is not practical to process many individual tracks and circumvents the problem of
large numbers of misassociations likely to occur if the individual tracks were maintained.

Unresolvable closely spaced objects cause another major difficulty. The sensor's
ability to resolve neighboring objects, of course, depends on the sensor, the fange, and the
viewing geometry. If unresolved, a group of closely spaced objects may appear as a
relatively large (compared to the signal from individual objects) extended object on the
sensor's detectors. A track, however, can be established on the extended object.

Another major tracking problem caused by CSOs is that the resolution can be
unstable from frame to frame, e.g., two targets may be resolved on one frame and not
resolved on the next and possibly resolved on the following. The instability of the
measurements stresses the association and estimation processes.
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B. ESTIMATION, ASSOCIATION, AND DECISION

1. Estimation: The Kalman Filter?

A statistical estimation filter consists of three parts: models for the dynamics and
measurement processes, statistical assumptions, and an optimality criterion. The result is
an algorithm for transforming measurements of a state into an estimate of it. The model for
the object's dynamics describes its time evolution, which may contain elements, referred to
as process noise, that are unknown or unpredictable, except for their statistics. One
example is the random changes in acceleration typical of rocket boosters. A measurement
model must both specify the relation between the state and the measurements and account
for the generally random inaccuracies, referred to as measurement noise, always present in
measurements. For instance, we may wish to determine the object's position, velocity, and
acceleration from noisy position measurements alone. The most simplifying assumption is
that the system noises are statistically independent, white processes.

Optimality criteria establish a measure for the "goodness" of an estimate. Once
selected, an optimality criterion, such as maximizing the likelihood function or minimizing
the mean square error between truth and estimate, leads to a procedure for transforming a
set of measurements into an estimate for the state. When the random processes in the filter
are assumed gaussian, or we require the estimate to be linear in the data, all optimality
criteria lead to the same estimator.

The term filter can be thought of as a generic term for the process of recovering
information from noisy measurements. Statistical filtering develops information from
noisy measurements by assuming that the desired signal and unwanted noise can be
distinguished by their statistical properties.

The term filter also refers to a type of information processing that is distinct from
two related types, smoothing and prediction. Filtering means the recovery at some
particular time, tx, of information about the system using measurements up to and including
that time. Smoothing differs in that the information about the system need not become
available at t, and measurements derived later than tx can be used in obtaining information

7 This section is based on material in the following publications: Andrew P. Sage and James L. Melsa,
Estimation Theory With Applications to Communications and Control, McGraw-Hill Book Company,
1971; Brian D.O. Anderson and John B. Moore, Optimal Filtering, Prentice-Hall Inc., 1979.
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about the system at tx. Prediction is the forecasting type of information processing in
which the aim is to obtain information at tx about the state of the system at a later time.

The Kalman filter is the mathematically optimal estimator for deriving at some

particular time; tx, an estimate of the state and. its covariance from measurements of the -

states.

The filtered estimate of the state is processed in two stages: a time update and a
measurement update. The first step, the time update, is the filtered estimate of the state at
the preceding time, tx_1, predicted ahead one step. The measurement update involves the
difference between the associated measurement and the predicted measurement, referred to
as the innovation, multiplied by the Kalman gain. Calculated by the filter, the gain
determines the weight given to the new measurement information. The prediction of the
state at some future time is computed from the present filtered estimate, without employing
the innovation process.

The filter also provides for the time and measurement update of the covariance of
the state estimate. In addition, the algorithm calculates the covariance of the innovation
process, which is the measurement prediction uncertainty, indicating the quality of the
prediction.

2. Association: The Concept and Role of a Gate

The innovation chi-square is derived from the innovation and its covariance
matrix. It specifies an elliptical volume in measurement space known as a gate that is an
indication of the track prediction uncertainty. The gate establishes an acceptance or
validation region into which observations considered for association with the track must
fall. Landing within the gate is a necessary but not sufficient condition for an observation
to be considered as having originated from the track because incorrect measurements may
also fall in the gate or the target may not have been detected in the gate. The sole purpose
of the gate is to decrease the processing load by decreasing the number of possible
observation-to-track association pairs by limiting the number of candidates. Observations
within the gate are often called validated.

The size of the gate is determined by fixing the probability that the correct .
measurement will fall within its volume. Since this probability is set to less than one there -

is a nonzero probability that the correct observation will not be a candidate for association.
A larger ellipse enjoys a higher probability of capturing the measurement that originates
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with the target but at the expense of possibly iricreasing the number of association
candidates and thereby increasing the processing burden.

If a gate is empty, there is no measurement to update that particular track. In this
case, the Kalman filter, which predicted the center of this gate, predicts ahead an additional
frame but now without the benefit of measurement update information. The measurement

prediction uncertainty is increased; thus, the gate is larger for the next frame.

There is some measurement origin uncertainty even if there is one measurement in
the gate because the target may not be detected in the gate and the observation could be
from a different target or a false signal. When updated, the measurement prediction
uncertainty of the Kalman filter typically decreases regardless of the true source of the
updating measurement because it fails to account for its origin uncertainty. In other words,
the measurement prediction uncertainty typically decreases after the update regardless of the
origin of the measurement.

For this reason, misassociations unless compensated for cause the filter to estimate
the quality of its prediction as better than actual. Misassociations may also cause poor track
performance, that is, a large gap between estimated and true tracks, and loss of track as the
filter follows an incorrect sequence of observations. Discrimination and battle management
is also adversely affected.

3. Decision: Strategies for Managing Measurement Origin Uncertainty

The fundamental multiple target tracking dilemma is deciding which measurement to
use, if any, in updating a track. An observation has three possible sources: an individual
target, clutter, or a set of unresolved targets. . Following Bar-Shalom and Fortmann,? we
define clutter as observations from background stationary objects, interference,
environmental anomalies, false alarms, etc., that are generally random in number, location,
and intensity.

The difficulties caused by not knowing the source of a measurement are shown by
considering the tracking situations in Figure 1. In the single-target case, there are two
measurements within the gate, each, or none, possibly originating from the target. The
correct decision is not obvious. In the multiple-target case, the gates overlap, with
measurement 3 falling in both. It is usually assumed that one measurement cannot be

8  Yaakov Bar-Shalom and Thomas E. Fortmann, Tracking and Data Association, Academic Press, Inc.
p- 153.
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simultaneously assigned to more than one track, that is, each observation is uniquely
assigned. If we decide that measurement 3 is associated with track 2, then measurement 1
is the only candidate for association with track 1. Thus, associations over multiple
targets are interdependent.

The manner in which the problem of uncertain measurement origin is managed can
be used to categorize approaches to multiple target tracking. Assignment methods make a
definitive decision, typically at each frame, on the origin of the measurement. One
measurement (or none) from those within the gate is selected as having originated from the
target.

Instead of selecting a single observation, the probabilistic data association (PDA)
approaches avoid selecting by averaging over all decisions. The track is updated, using all
measurements in the gate, weighted by the probability that they are correct. This is referred
to by Blackman as an all-neighbors approach.

Multiple hypothesis tracking (MHT) algorithms defer a decision on the origin of the
measurement. Multiple alternatives are retained as distinct tracks until later information
improves the probability of the correct measurement-to-track association.

C. MULTIPLE TARGET TRACKING APPROACHES: ASSIGNMENT,
PDA, MHT

1. Assignment

The simplest association scheme, known as the nearest-neighbor algorithm, assigns
a track to the measurement "nearest” to the predicted measurement, such as calculated by
the innovation chi-square. All other observations in the gate are disregarded.

One approach to multiple target tracking is to run a nearest-neighbor algorithm for
each track, independent of all other tracks. This is referred to as uncoordinated nearest
neighbor. In the situation shown in Figure 1b, the processor would decide for track 1
whether to update with measurement 1 or 3, or nothing, independent of track 2

assignments.

We have commented that this is unsatisfactory for high-density environments for
the reason that associations over multiple targets are interdependent when we require
unique assignments. This requirement is fundamental to simplifying the calculation
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because its effect is to make the different states statistically independent. Therefore, a
nearest-neighbor algorithm is generally executed in a coordinated manner as follows.

A cost matrix is defined by all possible track assignments, including that the
measurement is from a new target or false alarm, and all possible candidate measurements,
including the case that the correct track measurement is not detected in the gate. The cost
matrix entries are proportional to the probabilities of the assignments. These can involve
the innovation chi-square for the measurement-track association pair, the probability of
detection, the probability of the gate, the probability that the observation is from a new
. source, and the probability of choosing no observation for association with the track.

An algorithm, such as the Munkres algorithm, is run that assigns measurements to
tracks in a coordinated fashion by maximizing the sum of matrix entries subject to the
constraints that no track is updated by more than one measurement and one measurement is
not assigned to more than one track. The results of such an algorithm is a unique pairing of -
tracks to observations.

Assignment algorithms are used not only to associate one list of observations with
one list of tracks as just described. They can also be used to associate two lists of
observations or two lists of tracks. Furthermore, there are assignment algorithms that can
be used to associate data among more than two data lists, for instance linking several
frames worth of observations to tracks. In this manner, assignment algorithms can
generate multiple hypotheses, in the sense that more than one viable alternative per track is
retained over a number of frames. The general distinguishing characteristic, however, of
assignment algorithms is that of a definitive decision. For examples and discussion of
multiple frame assignment algorithms see the Alphaiech survey.

2. Probabilistic Data Association?

The Probabilistic Data Association Filter (PDAF) applies to a single target and is
strictly a method for handling the problem of multiple observations within the gate of an
established track. The fundamental idea is to exploit the association probabilities of
the complete set of observations within the gate for the target.

In the PDAF,; each observation in turn is considered as originating from the target.
Also, the case that the observation originating from the target is not detected is considered.

9 This section borrows heavily from Bar-Shalom and Fortmann, ibid.
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An association hypothesis consists of assigning one observation (or none) to the track and
considering all others as statistically independent clutter.

The PDAF procedure first multiplies the probability of each association hypothesis
with the updated state estimate that assumes that hypothesis is true; thereby weighting that
state estimate. Then the final PDAF state estimate is formed as the weighted average, that

is, the sum over the association hypotheses of the weighted average of the state estimates.

for each hypothesis. The estimate can be shown to be equal to the predicted state plus the
weighted average of the individual innovation chi-squares multiplied by the standard
. Kalman gain.

The covariance of the final PDAF state estimate follows immediately as the average
over the covariances for each hypothesis. This can be seen to be equal to a sum of three
terms. One term is the prediction covariance multiplied by the probability that no
observation originated with the target. A second term consists of the covariance of the state
updated with the correct measurement multiplied by the probability that the target-originated
observation is available. The last term increases the covariance of the total updated state to
account for the uncertainty in the origin of the observation.

The Joint Probabilistic Data Association Filter JPDAF) extends the fundamental
idea of the PDAF to multiple targets by computing the association probabilities jointly
across all targets rather than for each individual track. The final JPDA state estimate is
calculated as before as an average over the association hypotheses.

To summarize, the PDA state estimate is an average over observation-to-track
association hypotheses. Each hypothesis consists of an unique assignment of the track to
an observation. The total state estimate is an average over the many feasible assignments
for the one track.

The five principal distinguishing characteristics of the PDA approaches are the
assignment of one track to many observations, one per hypothesis, the exploitation of
association probabilities, the calculation of state estimates as averages over association
hypotheses, an adjustment to the covariance for source uncertainty, and a lack of organic
track initiation logic. The association probabilities are calculated with Bayes Theorem from
‘Probability Theory. For this reason, PDA approaches are one member of a class of
tracking approaches referred to as Bayesian Tracking Algorithms. We will discuss
other members of this class shortly. ’
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3. Multiple Hypotheses Tracking

An intuitive approach to managing multiple observations in a gate is to split the
original track into many tracks, one for each validated observation. This process is known
as track splitting. Each track is updated with the associated observation and carried .
forward to the next frame in the standard fashion. The fate of these many tracks depends
on whether the associated observations arise from clutter or targets.

If the source of the associated observation is clutter, then subsequent observations
for this track will be randomly detected and located. The quality of the track, therefore, is
expected to decrease markedly. For this reason, a pruning mechanism is usually contained
in track splitting algorithms to drop low-quality tracks.

An observation originating from targets may have four sources. First, the
observation could be from the original target. In this manner, this algorithm ensures
maintaining the original track. "Extra" observations within the gate could be from objects
just released by a common carrier vehicle, such as reentry veliicles and decoys released
from a post-boost vehicle. Also, the new observations could be newly resolved, closely
spaced objects from what had been a single unresolved CSO. In these two cases, tracks
are split, also referred to as spawned, by initializing the new tracks with the original
track’s state estimate on the previous frame.

Last, the extra observations could be from new iargets just moving into detection
range or field of view that happen to fall within the gate. Track splitting may provide poor
estimates in this case because the original state estimate may have very little to do with the
newly detected targets, except for their location on the sensor focal plane.

A track splitting algorithm has two limitations. First, the algorithm disregards all
observations that fall outside the gate. For this reason, a separate track initiation algorithm
must be included in the battle management system that uses this approach.

The second and major limitation of the track splitting algorithm is that association
over multiple tracks is performed in an uncoordinated manner. There is no conflict
resolution logic that manages the problem of observations within multiple gates.

Track splitting algorithms are distinguished by the assignment of multiple -
observations in the gate to one track, the deferring of difficult assignment decisions until
more information is generated, and the absence of association probabilities based on global
hypotheses. ‘
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Deferring difficult assignment decisions is prototypical of multiple hypothesis
tracking algorithms but other MHT approaches use association probabilities based on
global hypotheses. Recall that PDA algorithms use the probabilities of the multiple
association hypotheses, each one consisting of unique assignments of the latest set of
observations to the tracks from the prior frame. '

Both the PDA and track splitting algorithms assign many observations to one track,
but very differently. Track splitting generates one candidate track for each
validated observation assignment. PDA yields a final state estimate that is
averaged over all candidate hypotheses.

Two avenues for generalization are suggested. First, use association probabilities
based on global hypotheses but maintain individual state estimates rather than average state
estimates. Second, extend the association hypotheses over many frames rather than just the
most recent. An Optimal Bayesian Tracking algorithm would generate hypotheses across
all frames from the first through to the current.

Bar-Shalom and Fortmann!0 relate the PDA single frame approaches to an optimal
Bayesian algorithm as follows. Consider a time sequence of observations, one observation
per frame, from the initial to the present time. Such a sequence forms one possible target
history, that is, one possible track. Consider all possible such sequences. The set of all
possible assignments at the current frame can be decomposed into tracks at the previous
frame associated with some observation from the current frame. A few moments thought
reveals this is to be an abstract description of track splitting. - '

An association probability for each observation sequence, that is, a probability for
each track, can be calculated, conditioned on the entire set of observations. As in PDA, the
conditional probability for each hypothesis multiplied by the state estimate that assumes that
hypothesis is true is summed over all possible hypotheses. Thus, the updated state
estimate for a track is an average over the different possible association hypotheses.

Optimal PDA associates over all frames, not just the most recent. Its computational
expense may be prohibitive. A suboptimal approach looks back N frames, referred to as
N-backscan, rather than all the way to the initial frame. The original PDA is the zero-
backscan suboptimal version.

10 1bid.
1I-12

a4
Y



The optima] PDA shares the four principal distinguishing characteristics of the zero-
backscan PDA approaches. It generates track-oriented hypotheses, that is, every
observation is considered for association with each track from the previous frame. This is
the reason for the absence of organic track initation logic: no observation is considered for ..
association with a track that did not exist on the previous frame, that is, a new target.

Reid's!! multiple hypothesis tracking algorithm remedies the absence of organic
track initiation logic by generating observation-oriented hypotheses. Each -
observation is associated with a false alarm, as a feasible continuation of a previous track,
or as a new target, in the following manner.

Start with the hypotheses generated on the previous frame. Consider the first new
observation. Generate a new hypothesis for each possible assignment of the observation:
as a false alarm, as a feasible continuation of a previous track, or as a new target. Take this
new set of hypotheses and repeat this procedure with the second observation, except that
more than one observation cannot be assigned to one track. Continue in this way until
every current observation has been assigned.

For instance, Reid's algorithm applied to Figure 1 would generate ei ght‘hyporhescs
in the single target case and 30 hypotheses in the multiple target case. Reid refers to these
as cluster hypotheses. See Table 4.

Table 4. Results of Reid's Algorithm Applied to Figure 1a.

Cluster Hypothesis - Measurement 1 Measurement 2

1 FA FA

2 T1 FA

3 T2 FA
4 FA T1

5 T2 - T1

6 FA T3

7 T1 T3

8 T2 T3

‘Notes: FA = false alarm;
T1 = the original track;
- T2 = a possible new track originating with observation 1;
T3 = a possible new track originating with observation 2.

11 Donald B. Reid, "An Algorithm for Tracking Multiple Targets,” JEEE Trans. Auto. Control, Vol.
AC-24, No. 6, December 1989, pp. 843-854.
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While the total number of cluster hypotheses generated can be quite large, the
number of track assignment hypotheses is relatively few. This is important because the
number of computations in this approach can be greatly reduced, as we now demonstrate.

Observe from Table 4 that a cluster hypothesis consists of one possible set of track
assignment hypotheses. The original track; T1, is either associated with measurement 1 or
2 or with no measurement. New track 2, T2, may or may not be generated by
measurement 1 and similarly for new track 3 and measurement 2. This yields seven track-
oriented hypotheses. A similar calculation shows that there are ten track-oriented
hypotheses in the multiple target case in Figure 1b.

A particular track assignment hypothesis can appear in many different cluster
hypotheses. Each track assignment hypothesis is followed by a Kalman filter update
computation. If the track update computations were performed for each cluster hypothesis,
then the same filter update computation would be repeated many times. Instead,
association probabilities are calculated over alternative target assignment hypotheses and
then mapped onto the larger set of cluster hypotheses. It must be reemphasized that each
association hypothesis assumes unique track assignments so that the .association
probabilities are calculated over statistically independent states. .

The optimal implementation of Reid's algorithm would require ever-increasing
computer memory as more hypotheses are generated on each frame. A practical version
must limit the number of hypotheses. One method is to divide the set of tracks and
observations into independent groups, which Reid calls clusters, requiring conflict
resolution. Hypotheses are also limited by pruning and merging. Hypotheses considered
unlikely, say those below some threshold, are dropped while those that are "similar"
according to some criteria are combined. These operations are suggestive of track splitting
but in that case there were no association probabilities and there were multiple assignments
of tracks to observations. The Reid algorithm generates individual state estimates that are
scored by association probabilities. It is formulated in optimal and suboptimal versions,
which can be well implemented. Clustering, pruning, and merging can be adjusted to fit
hypothesis growth to track density and throughput and memory computer restrictions.

The major limitation of Reid's algorithm'is that it does not include multiple
assignments of tracks to observations, such as may occur in merged measurements, or

observations to tracks, such as may occur in track spawning. The fundamental reason for

this is the manner in which the association probabilities are calculated. One association
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hypothesis consists of a set of unique assignments. The probability of the assignment
hypothesis, calculated by Bayes rule, when the states are statistically independent,
decomposes into the products of probabilities for the individual tracks. Unique
assignments under each hypothesis ensure the statistical independence of the states.

Kovacich of Lockheed Missiles and Space Company recently described a Bayesian
multiple hypothesis tracking algorithm that remedies the defects in Reid's approach to
~produce the most advanced MHT algorithm to date.12 The key idea is to use a Bayesian
network architecture (also known as influence diagrams) to provide a calculus to represent
and manipulate joint probability distributions such as those that occur in multiple target
tracking. Rather than decompose the association-to-track problem into assignment
hypotheses, the fundamental unit in Lockheed's approach is the scene which is defined as
the joint set of observation-oriented hypotheses, track-oriented hypotheses, and track
spawning outcomes for different clusters. The probability for each individual possible
outcome is calculated by the Bayesian network.

D. GROUP/CLUSTER TRACKING

Thus far the discussion has been limited to tracking of individual objecis. In
Section 2.1 of this chapter we pointed out that one approach to managing the high density
SDI threat is to forego tracking individual objects and instead track groups. In this section
we will describe the issues and methods of such an approach.

1. Definitions

To begin, we need to define what we mean by group and cluster. In the previous
section the term clustering referred to collecting interacting observations and tracks, that is,
track clusters. In the discussion of group tracking, the term cluster is defined differently
and is used in reference to nearby objects, that is, target clusters. Before stating the
definition, a comment on what is to be included. Consider two simple examples that mark
- the extremes: (1) a long line of equally spaced objects; (2) a sphere of objects. In the
second example, each object is within some radius of the center of the sphere. In contrast,
each object in the first example is within some metric distance of at least one other object.

_12 Michael Kovacich, "Application of Bayesian Networks to Midcourse Multi-Target Tracking,”

presentation to the SDI Panel on Advanced Concepts in Tracking, Proceedings of the SDI Panels on

Tracking, No. 4, 1989.
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Another issue that often generates confusion is whether the objects in the collection
are based on truth or measurement data.
We will follow the lead of the SDI Panels on Tracking in our definitions.13

Cluster: A maximal collection of objects each of which is within some metric
distance of at least one other object in the collection.

Group: To be used at the author's discretion but to include a cluster.
Group track:  Track established to represent a cluster of objects.

Clump: A single observation arising from two or more objects.

2. Types ol-f Group Tracking

Following Drummond!4 we identify individual and group tracking as the endpoints
of a spectrum:

»  Group tracking without individual target tracks
*  Group tracking with simple individual target tracks
»  Individual target tracks supplemented with simple group information

¢ Individual target tracking without group tracks.

This ordering is suggestive of a logical sequence of operations that might occur in
midcourse tracking. During deployment of reentry vehicles (RVs) and decoys from post-
boost vehicles (PBVs), the threat initially consists of closely spaced objects. The objects
may resolve with increasing time from deployment as the threat cloud dispérses.15 As the
sensors move along their orbits, however, the resolution of objects is a function of the
sensor resolution and the viewing geometry and range. For this reason, the threat could be
resolving or unresolving during the course of the sensor's observations. ’

These considerations lead to the conclusion demonstrated below that the
information processing in group tracking algorithms must begin by deciding, based on
data, computational, communication, and operational considerations what combination of
group and individual target tracking to execute.

13 Proceedings of the SDI Panels on Tracking.

14 Oliver E. Drummond, Hughes Aircraft Company, presentauon to the SDIO Panels on Trackmg,
Proceeédings of the SDI Panels on Tracking.

15 This is not to suggest that the threat density will not or cannot be increased later in the flight.
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It is not possible to establish individual object tracks on members of an unresolved -
CSO. Extended object tracking must be executed. Only when the objects in a CSO are
resolved is individual object tracking possible. The density of observations and the high
rate that new objects are resolved, however, may compel group tracking as the only
practical alternative because of great computational expenses in track initiation and
misassociation. If objects unresolve, the tracking architecture must cxtrapolate 1nd1v1dua1 :
object tracks or establish group or extended object tracks. IR

There are critical operational requirements for maintaining tracks on individual
targets, including discrimination of RVs from decoys, threat assessment, and attack
execution. Group tracking is performed when individual object tracking is impossible or
too expensive. As the threat resolves, group tracks spawn individual object tracks, that is,
individual object tracks are initialized by the group track. Therefore, group tracking should
be evaluated based on its relatively inexpensive computation and communication - -
requirements and the quality and the processing load required of the initial estimates for the
spawned individual object tracks.

3. Single and Multiple Sensor Group Tracking

Blackman!® describes a single sensor group tracking algorithm that tracks the group
centroid position and velocity. A gating logic that is a generalization of the gate for an
individual object track determines which observations will be considered for updating the
group track. A conflict resolution logic is required for all observations that satisfy multiple
group track gates. All observations assigned to a group track are used to form a group
observation consisting of a measurement centroid and dispersion ellipse. The measurement
centroid updates the group centroid state in the standard manner of Kalman filtering.
Tracks for objects splitting off the group are initialized by the group centroid state.

Drummond, Blackman, and Hell,!7 have extended these ideas to multiple sensor
group tracking. The principal difficulty in multiple sensor group tracking is that the size,
shape, and composition of the group varies from sensor to sensor. For this reason,
multiple sensor group tracking must have more information than just the location of the:

16 Samuel S. Blackman, Multiple-Target Tracking with Radar Applications, Artech House, Inc., 1986,
Chapter 11. '

17 oE. Drummond, S.S. Blackman, K.C. Hell, "Multiple Sensor Tracking of Clusters and Extended
Objects,” Technical Proceedings 1988 Tri-Service Data Fusion Symposium, Laurel, Maryland, May
1988.
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group. Drummond et al.'s approach is to model the group as an ellipsoid in three
dimensions. Separate filters are established for the group centroid and the ellipsoid extent
parameters.

The group centroid state estimate initializes tracks for objects that split away from
the group, as before. The ellipsoid extent state estimate permits sensors in different
locations to associate groups and facilitates handing over group data to other sensor
systems.

E. CONCLUSIONS

We have reviewed the major difficulties and methods in SDI tracking. We have
chosen to organize the discussion around the critical problem of uncertain measurement
origin that arises during the association of observations to tracks. This is sometimes
referred to as the frame-to-frame association problem. We have not discussed other types
of association, such as observation-to-observation and track-to-track, that are typically
performed in sensor fusion, even though real-world SDI tracking algorithms involve
multiple sensors. We have said little about filtering beyond defining it and developing its
relationship with observation-to-track association. )

There are many components in a complete tracking system. Before tracks can be
maintained by association of validated observations and updating they must be initiated.
Track initiation refers to the formation of the first or initial estimate of the state of an object.
We have found that, for the nonexpert, following the information flow among these many
components is often one of the most significant impediments to understanding particular
tracking algorithms. For this reason, the next chapter presents an overview of tracking
algorithm architectures developed by the SDI Panels on Tracking.
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- IIL._OVERVIEW OF TRACKING ALGORITHM
ARCHITECTURES

The SDI Panels on Tracking have standardized on a small set of algorithm
architectures as high-level descriptions of the logical flow of information in tracking
algorithms. It is expected that most algorithms can be decomposed in terms of these
algorithm architectures, first identified by Drummond.!8.

A natural taxonomy of multiple sensor, multiple target tracking algorithms is
organized by dividing the problem into track initiation and track maintenance algorithm
architectures for individual objects and clusters. First consider the algorithm architectures
for individual object track maintenance contained in Figures 2-5.

Figure 2 establishes the basic functions of single sensor track maintenance
algorithms. Figure 3 represents an architecture in which individual sensor tracks are fused
together. Instead of combining tracks, a frame's worth of measurements from multiple
sensors could be combined before being filtered, as in Figure 4. Figure S differs from
Figure 3 in that the individual sensors no longer maintain individual tracks. The system
uses only central track files.

Figures 6-9 depict individual object track initiation architectures. Figure 6
establishes the basic functions of single sensor track initiation algorithms. Figures 7, §,
and 9 are similar to Figures 3, 4, and 5, demonstrating that tracks or one frame's worth of
measurements could be combined and that the system could use individual sensor tracks or
centralized tracks. '

Cluster tracking algorithm architectures involve more than the basic individual
object functions. The data emerging from the signal processor and requirements from the
battle manager determine the type of tracking to be performed. This is depicted in
Figure 10. Figures 11-18 are essentially equivalent to Figures 2-9.

18 O.E. Drummond, "Multiple Target Tracking Lecture Notes,” UCLA October 1985, Revised 18 March
1988, Technology Training Corporation, Torrance, CA.
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Figures 2-18 establish the functions that make up tracking algorithms. The
descriptions in the figures use terminology that is indicative of but not specific to
techniques in particular architectures. This was done in order to remain at a sufficiently
high level of generality so that these architectures were applicable to most algorithms...
~ Hence, the terms association, filter, and track were used in their most general sense.

There are two major areas of detail lacking in these figures. First, specific
definitions and descriptions of techniques for each function of the process. Second, the
distribution and location of computer resources for carrying them out.

The SDI Panels on Tracking have moved to describe some of the specific
techniques, which are the fundamental tracking algorithms, most of which are described in
‘Chapter 2. For instance, Figure 19 summarizes track maintenance functions and Figure 20
the elements essential to the description of measurement-to-track association. Finally,
Figure 21 indicates specific algorithms for this purpose. Figures 22 and 23 repeat this for
track initiation.

The overview of methods and tracking architectures presented in the last two
chapters should prepare the nonexpert reader for the algorithm survey in the remainder of
this report.
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Figure 20. Measurement-to-Track Association Descriptors
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- SINGLE SCAN
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- MULTIPLE SCANS
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- DEFERRED PDAF
- SINGLE TARGET MULTIPLE HYPOTHESIS TRACKING, e.g., TRACK
BRANCHING

. FOR OBJECT TRACKING AND COORDINATED ASSOCIATION
- SINGLE SCAN
- OPTIMAL ASSIGNMENT (e.g., MUNKRES)
- SUBOPTIMAL ASSIGNMENT (e.g., GREEDY)
- JPDAF

- MULTIPLE SCANS
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- DEFERRED JPDAF

Figure 21. Algorithms for Measurement-to-Track Association for
' Object Track Maintenance
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Figure 22. Functions and Descriptors of (Cold Start) Track Initiation
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Figure 23. Algorithms for Multiple Scan Observation Assoclation in
Object Track Initiation
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IV. SURVEY OF TRACKING ALGORITHMS

This chapter contains a summary of the algorithm survey responses to facilitate the
understanding of the responses and to succinctly point out the algorithms' general features,
information flow and calculational techniques.

The SDI Panel on Critical Issues in Tracking developed a common survey format
for describing tracking algorithms to ensure that key questions were answered in a succinct
manner and to simplify the process of understanding the details of the activities, One part
of that format was a decomposition of all tracking algorithms into a taxonomy consisting of
four track initiation and four track maintenance generic processing chains. It was expected
that most responses would conform to the survey format and processing chains. The
survey fofms and responses are contained in Appendix A and B, respectively.

SUMMARY OF ALGORITHMS

1. Organization: Advanced System Architectures Ltd.

Algorithm: An Object-Oriented Architecture for Sensor Data Fusion/
Tracking in Dense Threat Environments.

Submitter: Edward J. G. Goodchild

Description:  The algorithm is designed to perform multiple sensor, birth-to-
death, three-dimensional tracking of individual objects and clusters. Single sensor scan-to-
scan association and track-forming functions are excluded. Unassociated two-dimensional
observations are fused across multiple sensors. Tracks are initiated directly into three
dimensions from three two-dimensional unassociated observations. New tracks are formed
by track spawning of boost phase tracks and are assigned to members of a cluster. New
tracks formed by spawning during the post-boost phase are assigned to members of the
cluster. Cluster tracks are also formed later by association of a number of non-cluster
member tracks, all having near identical trajectories. Cluster tracks determine rectangular
gates that are used to partition new observation data. A six-state Kalman filter is used for
individual target track state estimation and a second six-state Kalman filter is used to
maintain the cluster track trajectory and extent. Track pruning tests implemented and
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planned include: consistent and sensible track behavior, behavior of the error covariance,
and continued updating with new sensor data. The algorithm is in a concept-proving stage.

2. Organization:. Alphatech -

Algorithm: Multiple Information Set Tracking Correlator (MISTC)
Submitter: Robert B. Washburm, Jr.

Description:  This work investigated eight different data association

algorithms focused on the midcourse problem of multiple sensor individual object track
" initiation and track maintenance. Tracks are initiated as two-dimensional tracks until
multiple sensor associations are made; three-dimensional tracks are then initialized. A
single scan of observations from multiple sensors (two or three), containing an’ assumed
100,000 objects, was partitioned into spatially separated groups assumed to consist of
about 100 objects. After partitioning, each data group was processed by the
tracker/association algorithm. Of the eight association algorithms, three were zero-scan,
pairwise approaches and five were N-scan, multiple hypotheses approaches. The same
association algorithm performed scan-to-scan and sensor-to-sensor association. Ten
hypotheses were permitted per target, with each hypothesis scored by likelihood ratios.
Extended Kalman filters for state estimation assume the targets travel along Keplerian
trajectories. The algorithms did not handle track spawning. Algorithms have been
implemented for sequential, off-line processing in FORTRAN. Plans include incorporating
CSO tracking and resolution into the algorithms and implementing them on different
parallel processors.

3. Organization: Ball Systems Engineering (VERAC, Incorporated) and
Daniel H. Wagner, Associates

Algorithm: SDI Midcourse Tracker/Correlator Algorithm
Submitter: Larry Filippelli

Description:  This single sensor, midcourse individual object tracking
algorithm does not perform cold start track initiation. Instead, warm start track initiation of
a six-state Kalman filter is accomplished by handover of boost phase information. The
algorithm relies on the assumption that objects tend to cluster into spatially inseparable
groups to reduce the combinatorial explosion that results from high target density. Clutter
is assumed removed by the signal processor and not passed to the information processor.
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Multiple observation-to-track association hypotheses are formed by track splitting and
scored using a Bayesian approach that takes into account probability of detection,
probability of false alarm, false and new target densities, and observation-to-track
association scores. Hypotheses are deleted if their score is below a percentage of the score
of the best hypothesis. There is also a maximum number of hypotheses that can be saved.
A second-generation algorithm has been completed and is in the testing phase. The
algorithm has been installed at NRL and LANL.

4. Organization: CALTECH Jet Propulsion Laboratory
Algorithm: CALTRAX: The Tracking Program for Simulation-88
Submitter: James Ortolf (Applied Research Associates)
Developer: Thomas D. Gottschalk

Description:  This algorithm tracks individual objects in the boost and post--
boost phases from multiple sensors. Single-sensor, two-dimensional tracks are initiated by
a three-scan batch processor. Two-dimensional tracks are maintained by a four-state
Kalman filter and track splitting. Tracks are deleted on the occurrence of a single empty
gate (probability of detection is assumed equal to one) and merged if of common history.
Mature tracks are propagated to a common time and exchanged with a stereo partner sensor
to determine the three-dimensional state vector in earth-centered inertial coordinates. The
two sets of tracks are associated by a modified nearest neighbor algorithm to initiate three-
dimensional tracks, which are used to solve for launch parameters according to a powered
flight model. Once initialized, launch parameters are updated on subsequent scans by
means of extended Kalman filters. Individual sensor observations are associated with
three-dimensional tracks by a global modified nearest-neighbor algorithm. Any
observations unassociated with a three-dimensional track on one sensor, if part of a mature
two-dimensional track, are associated with those on the stereo partner sensor to initiate new
three-dimensional tracks. The design of the three-dimensional tracker is based entirely on
parameterized trajectories, with all updates of existing tracks done using extended Kalman
filters for assumed trajectory models. The next generation tracker will perform parameter
estimations on arbitraxy flight models.
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5. Organization: ESL
Algorithm: Tracking Algorithm for Project Swat
Submitter: Jack Liu.

Description:  The al gorithm, produced to evaluate the applicability of
DARPA's MOSAIC architecture developed by ESL, performs single platform tracking of
individual objects during midcourse. The survey response provides no specific
information on track initiation procedures. Track maintenance is accomplished by a single
target, multiple hypotheses scheme: nearest neighbor observation-to-track association in a
rectangular gate updates the track; remaining observations in the gate are used to split new
tracks; and detections within overlapping gates are utilized by all affected tracks. Tracks
are scored by the log-likelihood function of the detection relative to the prediction plus
maintenance bias. The scores are cumulative. When a set track redundancy is reached, the
low score tracks are deleted. Tracks that are very close in terms of estimated object state
and uncertainty are merged in a probabilistic fashion based on their track scores. A six-
state extended Kalman filter is the track estimator with an earth gravity model selectable up
to J6. Multiple platform tracking will be addressed in the near future.

6. Organization: Hughes Aircraft Company
Algorithm: Multiple Sensor Cluster Tracking
Submitter: Oliver E. Drummond
Developers: Oliver E. Drummond and Samuél S. Blackman

Description: = This algorithm, for use in the early midcourse phase,
accomplishes multiple sensor tracking of multiple clusters. Cluster tracks can be used to
initiate individual object tracks as the closely spaced objects become resolved, by track
spawning based on the estimated PBV track. This permits a smooth transition from PBV
cluster deployment to individual target tracking. The filtering segment of the algorithm
estimates the cluster centroid position and velocity in inertial space and the cluster extent,
the second central moment in inertial space, of the objects in the group. The extent, which
establishes the cluster size and shape in inertial space, not just relative to a particular
sensor, is used to determine which observation belongs to which group. Based on the
projection of the predicted extent on to the field of view of a sensor, a gate is computed for
a cluster. The filtering is composed of two filters, one for the state of the centroid and
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another for the extent. The filter for the 6-D centroid state is a simplified extended Kalman
filter; the extent state has 6 elements and the filter is a pseudo-linear filter. Feasibility tests
have been conducted successfully for cluster tracking under realistic conditions and further
testing is under way. '

7. Organization: Lockheed Missiles and Space Company
Algorithm: SSTS Tracking and Association Algorithm
Submitter: Michael Kovacich

Description:  This algorithm accomplishes multiple sensor, birth-to-death,
group-to-object, midcourse tracking of groups, clumps, and objects in the presence of
clutter, including stars, nuclear redout, and a structured background. Initial coarse three-
dimensional track estimates are produced by each sensor after four-to-six updates using an
iterated maximum likelihood passive ranging algorithm. Precision ECI tracks are initiated
by multiple sensor triangulation. The track initiation process completes with the formation
of precision tracks. Data association and track maintenance are accomplished by a multiple
hypotheses approach known as a Bayesian network architecture. Pruning, merging, and
clustering are used to control the combinatoric explosion. Hypothesis scoring accounts for
clutter density, new track density, missed detections, and cumulative chi-squares.
Thresholds based on a fraction of the best track score are used for track promotion and
deletion. A variant of the A* search algorithm is used to find likely hypotheses. Tracks are
merged and the covariance matrix adjusted accordingly, in a manner similar to PDAF. The
Bayesian network approach includes the multiple assignment of observations to tracks and
the multiple assignment of tracks to observations. An extended Kalman filter performs
track estimation. The algorithm is currently being implemented in ADA in preparation for a
1989 demonstration.

8. Organization: M.LT. Lincoln Laboratory |
Algorithm: A Mid-Course Track Initiation and Maintenance Algorithm
Submitter: Ming J. Tsai |
Developers: M.J. Tsai, K.P. Dunn, LC Youens, and C.B. Chang

Description:  This midcourse, individual object and cluster track initiation and
track maintenance algorithm accomplishes single sensor track initiation of clusters by
forming track files for edges of clusters. Tracks on cluster members are then initiated by -
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assuming that targets within the same cluster travel in parallel. Tracks initiated by two
sensors are merged and track maintenance performed in a sensor-by-sensor centralized
fashion. Tracks are maintained by an extended Kalman filter and nearest neighbor
observation-to-track association. The algorithm has been implemented, tested, and run in a
number of simulated threat/sensor scenarios. Currently, it is being integrated with
discrimination algorithms and radar tracking functions. '

9. Organization: McDonnell Douglas Space Systems Company
Algorithm: Integrated Correlation, Track
Submitter and Developer:  Thomas R. Blackburn

Description:  This algorithm was developed for cold start track initiation and
track maintenance of individual objects in the late midcourse phase of their trajectory, when
objects are resolvable but not undergoing the influence of the atmosphere. Two sensor,
sensor-to-sensor, observation association is performed before track initiation in order to
initiate three-dimensional tracks. Sensor-to-sensor association is performed by matching
the pseudo-elevation angle generated from interpolated line-of-sight measurements taken
from two frames of data. The track file is initiated with a square-root information filter. A
nearest-neighbor observation-to-track association is used in track maintenance to provide
measurement updates to a six-state Kalman filter. The algorithm is in the late conceptual
development stage and has been tested and debugged running against threats consisting of
about 600 objects.

10. Organization: MindGate Technologies, Inc.
Algorithm: Cluster Map Tracking
Submitter and Developer: Lawrence M. Beyl

Description:  The crux of this midcourse tracking algorithm is the supposition
that there are patterns within a threat that are naturally formed by the objects dispersed from
the same PBV and that are heading toward the same target. A collection of co-moving
objects is termed a cluster. The pattern of angle measurements of objects in a cluster can be
traced from one scan to another by using the previous scan's two-dimensional map of the
cluster as a pattern for the next scan's data associations. Thus, this is a pattern-matching
algorithm. The interlocking of the cluster to its source data permits each map to be used as
a filter to remove the cluster's new measurements from the field-of-view for the sensor
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with the extracted data set then used to replace the existing set as the new cluster map.
Each time a cluster map is updated, the associated cluster centroid state is updated via a six-
state extended Kalman filtering, where the data used in the update is a calculated pseudo-
measurement created from the collection of angle measurements that define the cluster map.
The transition to individual object tracking is accomplished by forming an initial state vector
and covariance for each object within the cluster through the centroid state, the angular
separation of the objects within the cluster from the centroid, the cluster spread and spread
rate, and the angular measurement accuracy. Splitting, merging, and other phenomena are
handled within the individual object tracking environment, but are always restricted to the
domain of the cluster. A cluster's centroid state can be estimated initially based on the PBV
state at the time of deployment from boost phase information.

11. Organization: MITRE Corporation, Bedford

Algorithm: The MITRE Experimental Version Prototype (EVP) Ballistic
Tracker '

Submitter and Developer: J. A. Krajewski

Description:  This algorithm performs individual object tracking during post-
boost and midcourse using sensor-by-sensor centralized track maintenance. There is no
cold start track initiation capability. Instead, the algorithm relies on warm start track
initiation from handover of boost-phase tracks and spawning of RV/decoy tracks (assumed
distinguishable from PBV tracks). The data are partitioned based on a user defined angular
distance threshold and a distance matrix calculated for each group. Hungarian and Greedy-
type algorithms are used for observation-to-track association. For each association pair,
the distance is tested against a threshold and, when greater, the association is suppressed.
A six-state extended Kalman filter is used to estimate the Keplerian three-dimensional
ballistic tracks. The state is updated using two-dimensional observational data from one.
SSTS satellite at a time. All algorithms have been coded in FORTRAN and are being
written in Ada. Test cases are currently being run and analyzed. '

12. Organization: MITRE Corporation, Bedford

Algorithm: The MITRE Experimental Version Prototype (EVP) Boost-
Phase Tracker. '

Submitter and Developer: J. H. Latimer
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Description:  This is a boost phase, individual object, two sensor, track
initiation and track maintenance algorithm that develops three-dimensional position
estimates by associating observations from the asynchronous sensors before initiating and
updating tracks. Cold start track initiation is performed from a single three-dimensional
position estimate and the a priori assumptions of a three-degree-of-freedom, reference
rocket trajectory model. A Newton's method iterative procedure is used to fit the reference
trajectory to the three-dimensional target position. The value of the reference trajectory
velocity and acceleration at the point of the fit is used to initialize the track state estimate.
The data from two sensors are paired by mapping the data from one sensor onto the focal
plane of the other. The position estimate-to-track association is performed by a Greedy-
type algorithm. Tracks are estimated by a nine-state Kalman filter for the position,
velocity, and acceleration in Cartesian earth-centered inertial coordinates. The algorithm
does not handle stars, false alarms, or other forms of stationary clutter. All algorithms
have been coded in FORTRAN and are being written in Ada. Test cases are currently
being run and analyzed.

13. Organization: MITRE Corporation, Bedford
Algorithm: The MITRE Multi-Sensor, Multiple Target Tracker.
Submitters and Developers: R. Varad and J. T. McKernan

Description:  This is a boost phase, individual object, three sensor, track
initiation and track maintenance algorithm that associates two sets of stereo-associated data.
Three sensors are divided into two pairs and observations are associated for each pair.
Then the two pairs of associated observations are fused. Range is determined from the
common sensor once target lists from each pair are formed and then associated based on
hinge angles, in-plane angles, and estimates of the baseline ranges determined from each
pair. A track is initialized when association can be obtained in hinge angle, in-plane angle
and range for data from two consecutive scans. . After initialization, rates for hinge angle,

in-plane angle, and range are calculated for each track and predictions of target coordinates ‘

for the next scan are made. The track state consists of position and velocity estimates in
three dimensions. The algorithm is fully designed, developed, and implemented in Pascal.

on a VAX/VMS system.

14. Organization: Raytheon Company
Algorithm: BMEWS Phased Array Radar Upgrade
Iv-8
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Submitter: Fred Daum

Description:  This boost and midcourse single-sensor, cold-start track
initiation and track maintenance algorithm processes phased array radar measurements of
range, elevation, azimuth and target amplitude to estimate posmbn and vclocny vectors in a
six-state Kalman filter. A multiple hypothesis track i initiation scheme is used with pulse-
pair track initiation and track maintenance. The observation-to-track association is
performed by a nearest neighbor chi-square test.

15. Organization: Raytheon Company
Algorithm: Ground-Based Radar (GBR)
Submitter: Fred Daum

Description:  This midcourse single-sensor cold or warm start track initiation
and track maintenance algorithm processes phased array radar measurements of range,
elevation, azimuth, target amplitude, and phase to estimate position, velocity, and higher
order rotational dynamics (for discrimination). A multiple hypothesis track initiation
scheme is used with pulse-pair track initiation and track maintenance. The observation-to-
track association is performed by a nearest neighbor chi-square test. Three Kalman filters
are maintained: six state, seven state, and sixteen state.

16. Organization: Space Computer Corporation
Algorithm: Velocity Filter Algorithm for SDI Detection and Tracking
Submitter: William J. Jacobi

Description:  Both boost and midcourse appllcanons of this cold start track
initiation algorithm have been investigated. Operatmg with either resolved or unresolved
objects, the velocity algorithm performs a combination of signal-to-noise enhancement and
scan-to-scan association functions utilizing a "track-before-detect” approach. A bank of
filters matched to different vector velocities provides correlated object positions and
velocities for track initiation. The vector velocities to which the filters are tuned are derived
from cross-correlation of successive input image frames. When the data contains "velocity
clusters," the algorithm is inherently robust against object proliferation, merging/crossing
trécks, background clutter, and temporary loss of data.



17. Organizatipn: Systcms. Control Technology
Algorithm: Dynamic Programming Algorithm (DPA)
Sgbmittér: Kenneth Kessler
Developer: Yair Bamniv

Description:  Another "track-before-detect" approach, the dynamic
programming algorithm is a practical and feasible alternative to replace exhaustive search
techniques for detecting and locating entire target trajectories inside a sensor's field of view
over some time interval. This is accomplished by batch processing data over a small
number of frames through a bank of matched filters, where each filter represents a single
possible two-dimensional trajectory. The algorithm produces simultaneous detection and
two-dimensional tracking of targets because its output consists of detected targets and their
associated hit strings. The analysis and software development has been ongoing for over
seven years.

18. Organization: TITAN Systems
Algorithm: Knowledge-Based Sensor Fusion (KBSF)
Submitter: Timothy E. Brockwell

Description:  This is a tracking algorithm to the extent that it is not entirely
possible to decouple tracking from discrimination. The program was initiated to determine
whether rule-based techniques could be applied to strategic sensor fusion, specifically to
demonstrate a rule-based approach to multi-sensor discrimination. The goal is to host and
evaluate competing algorithms, primarily those designed for platform-to-platform
association and track maintenance, by building a machine that automatically selects the
"best" algorithm for fusing multiple or single platform, multiple sensor track data.
Experiments are being conducted with fuzzy techniques for determining "degrees of
membership" in the set of valid tracks that is maintained by the system, and for uncertainty
management in general. Currently, a variation on the Sequential Probability Ratio Test for
determining "degrees of membership” in the set of valid tracks is employed.

19. Organization: TRW, Huntsville

Algorithm: ADOP Scan-to-Scan and Track Algorithm Set

Submitter: J. T. Lawson
IV-10



Description: This is a midcourse, single sensor, individual object and cluster
cold start track initiation and track maintenance algorithm that uses pattern matching in the
data association and derives object velocity estimates from three-color correlation
processing. In the track initiation phase, association is performed over six frames. The
algorithm partitions the observations in a scan according to a distance separation threshold.
For each partitioned set, the group centroid and group velocity are calculated, as are the
predicted centroid for the next scan, a centroid gate, and a group azimuth-elevation extent
gate. The grouped observations are associated by pattern matching between scan 1 and
scan 2 and between scan 2 and scan 3; thereafter the association is performed in an
independent, nearest-neighbor manner. Objects are assumed to follow non-maneuvering
Keplerian ballistic trajectories. During the angle-only phase of tracking, a cubic-fit least
squares filter in azimuth and elevation is used. A precision track mode uses a six-state
Kalman filter. An iterative batch filter is used to transition between the modes: an initial
state estimate is obtained by the Gauss algorithm for orbit determination given three angle-
only sightings; the batch filter is then applied over the previous observation history to start
the Kalman filter. A track is declared lost and no longer maintained after two consecutive
empty gates. All clutter is assumed removed by the signal processor and not pas;sed to the
tracker. Versions of the algorithm's software (Pascal) are available at the USASDC
Advanced Research Center for both the Honeywell and DEC VAX configurations. No
significant improvements have been made since 1985.
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TRACKING ALGORITHM SUMMARY

Submitter's Name:

Submitter's Company/Organization:

Submiitter's Phone:
Address of Submitter:

Author's Company/Orgamzanon
Author's Phone:
Address of Author:

TITLE OF ALGORITHM:

SPONSOR:

DEVELOPER:

(Complete as appropriate)

NOTES AND INSTRUCTIONS

(The Summary/Abstract of the algonthm should be hrmted to half a page. The basic -
answers to the questions below should be limited to three pages. Additional information,
referenced to the section numbers, should be included in a separate appendix that should be limited
to four pages. Classified information should be included in a separate supplement. The total
information including Abstract/Summary, basic answers, appendix, and classified supplement
should not exceed eight pages. If some of the algorithms or details are proprietary, indicate what is
proprietary and discuss only the nonproprietary aspects.)

ABSTRACT/SUMMARY

(Describe, in general terms, how the algomhm works and, if applicable, provide a hxgh-
level flow diagram.) : ‘
1. CONTEXT

(What processing chain characterizes your-algorithm? [see Figs. 1-4]. What functions
~ within the chain are covered by your algorithm, e.g., Track Initiation, Track Maintenance, etc? To
what phase(s) of SDI is your algorithm applicable - Boost, Post-Boost, Midcourse, Terminal?
What are your inputs, e.g:, single sensor or multiple sensors, clustered data or not clustered data,
etc.? What are your outputs e.g., 2d tracks or 3-d tracks, launch parameters?)

2. NOTABLE FEATURES R
(List any features that distinguish the algomhm )
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3. SENSOR ARCHITECTURE AND THREAT SCENARIO

(Characterize the scenario that drives the algorithm design. What is the threat size and
density? What are the assurnptions about background clutter? Is all the clutter removed prior to
tracking? What is the constellation size and orbit? What are the measurement errors/biases? What
is the target kinematic model? Does the target maneuver? Is its signature related to aspect angle?)

4. SENSOR MODEL/PROCESSING

(What is the model used for sensor/signal processing? What is the probability of detection,
false alarm? What is the clutter density and model for the clutter density, e.g., uniform density in
regions with a Poisson model for clutter returns? What is the sensor? Is it a scanning or staring
sensor? What is the frame time? Is it variable? How many wavebands of data are available?
What is the measurement noise, bias, resolution? How are CSOs modeled? What are the
attitude/navigation errors/bias assumed? What is the precision of your input data? Specify the
interface between the sensor/signal processor and the tracker, e.g., [time, az, el, snr, extended
object indicator, covariance].)

S. TRACK INITIATION

(Specify the method used to initiate tracks. How does it work? Are tracks initiated as 2-d
tracks or 3-d tracks? Is cold start initiation performed, i.e., is handover data assumed for all
tracks? Are tracks processed individually or in a batch or both? How is the initial precision track
state estimate generated? Is track initiation performed sequentially or in a batch mode or both?
How long does it take to initiate a track (scans or seconds)? How are cluster tracks initiated? If
applicable, provide a high-level data flow. If Track Initiation and Track Maintenance are not
separable in the algorithm design, so indicate and describe the Track Initiation and Maintenance
algorithms in Section 5 and omit Section 6.)

6.1 TRACK MAINTENANCE - DATA ASSOCIATION

(Specify the data association approach for scan to scan, similar sensor platform to platform
association and dissimilar sensors. Are multiple hypotheses generated? How is the combinatoric
explosion controlled: pruning, merging, clustering? What is the branching factor in the hypothesis
tree? How deep are the hypothesis trees? How are hypotheses scored: Bayesian, Likelihood,
Heuristic, other? What search algorithm is employed to develop track hypotheses? Is an
assignment algorithm used: Munkres, Brogan-Lemay, other? Does track spawning occur? For

_satellite-to-satellite association, how is the resolution difference between the satellites accounted for
in performing association? How are stars and false alarms [stationary clutter] handled?)

6.2 TRACK MAINTENANCE - STATE ESTIMATION

(Specify the approach used to estimate the state vector for the track. What is the coordinate
system? What is the state vector? What type of filter is used? What assumptions are made in the
filter, e.g., what is the dynamical model, what dynamics are unmodeled and treated as noise, are
noise measurements assumed uncorrelated, is the measurement noise assumed to be constant? Is
the filter nonlinear, iterated, batch, sequential? Are weighted sums of Gaussians used to generate
the state vector estimate as in PDAF or JPDAF? How does the filter account for biases due to
targets becoming resolved [spawning] or become unresolved [crossing]?)

6.3 TRACK MAINTENANCE - TRACK PROMOTION/DEMOTION

(Specify the criteria for promoting, demoting and terminating tracks. Specify the method
for maintaining the track status. [Thc track status indicates the degree of confidence that the track
represents a valid target.] What is the criteria for pruning or promoting a track? What is the
scoring method, e.g., Bayesian, Likelihood, heuristic measures such as m out of n?)
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7. TRACK FILE MAINTENANCE

(Specify the data that is maintained in the track file. Are extended objects, clusters,
maneuvering objects, complete trajectories, threat corridors, etc. detected and maintained? What
special data structure for datafile management have been used?) .

8. OUTPUT TO BM/C3 AND USERS

(Specify the interface to users of the tracking data, esp. BM/C3. What is the data in the
interface? How often is the data sent? What is the reporting criteria? How is the data computed?)

9. COMPUTATIONAL REQUIREMENTS

(Specify the throughput and memory requirements of the tracking algorithm. What
scenario is used? How are throughput and memory measured? What machine/language is used?
Are the results scaleable? Are the results empirical or theoretical? Are there performance bounds?
What is the target machine? Is the target machine special or general purpose? Describe the degree
of parallellism [e.g., 10 processors, 100 processors or more?] and the processor architecture.
What are the sequennal and parallel throughput requirements?)

10. CURRENT STATUS

(Describe the current status of the algorithm: conceptual development, design,
coding/debugging, implementation, testing? Has the algorithm undergone performance
optimization? Has hardware been optimized to execute the algorithm? What are the future plans?
Has real data from current sensors been used?)

11. PERFORMANCE MEASURES AND RESULTS

(Specify the performance measures used to characterize the tracking algorithm. How are
the performance measures defined? What scenario(s) were used to generate the performance
values? What are the results? Are there theoretical performance bounds, e.g., Cramer-Rao
bounds? What are the performance limits? Under what conditions does the algonthm perform
poorly?)

12. REPORTS

(List report(s) that are relevant to the description and performance of the algorithm:
Additional data such as equation development should be referenced.)




GENERIC ALGORITHM PROCESSING CHAINS

The panel on Critical Issues in Tracking has determined that
there are four basic processing chains for track initiation and
four basic processing chains for track maintenance. These chains

are pictured below.

The depictions of processing chains presented here are meant
to be high level descriptions of the logical flow of information
in algorithms. It is expected that any algorithm can be defined

in terms of these chains.

In order to remain at a sufficiently high level of
generality so that these chains are applicable to all algorithms,
it is important to use terminology that is indicative of but not
specific to techniques in particular processes. Hence, the terms
association, filter and track are used in their most'general

sense.

There are two major areas of detail lacking in these
depictions. First, specific definitions and descriptions of
techniques for each part of the process. Second, the

distribution and location of computer resources.
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SUBMITTED BY: Edward J. G. Goodchild Tt February 1989
Advanced System Architectures Ltd.
Johnson House,
73 - 79 Park Street,
Camberley,
Surrey,
England, GU15 3FE.

Telephone 011 44 276 682756

AN OBJECT-CRIENTED ARCHITECTURE FOR SENSCR DATA FUSION/TRACKING
IN DENSE TARGET ENVIRONMENTS

SPONSORS : ADVANCED SYSTEM ARCHITECTURES,
SDIO BM/C?, Captain Johnson
DEVELOPER : Advanced System Architectures, Data Fusion Department
AUTHOR: Edward J. G. Goodchild
SUMMARY

The "algorithm" is a target-oriented system designed to verform multi-sensor.
multi-object data fusion and three-dimensional tracking in a caomputationally
practical manner in dense target environments. It has been designed to overate
with data from any mix of bearing-only and 3-D sensors. and tracks both
individual targets and target clusters of arbitrarv size.

The algorithm is based upon an object-oriented svstem architecture. embedding
the tracking filters and data association fating functions within renlicable
logical objects. One such object, or process, is assigned to track each
perceived target, thus exploiting to the maximum the inherent parallelism in the
data fusion task. A tracking process has the sole task of increasing its .
knowledge about the body it is modelling by examination of sensor data. and
using any such reports that are relevant to that body.
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1.  CONTEXT
1.1 PROCESSING CHAINS

The processing chain characterising the data fusion algorithm differs depending
on the type of data provided by the sensor. The system has been designed to
accept data in the form of hits or _scan-to-scan correlated tracks in either two
or three dimensions.

Track initiation from uncorrelated 2-D hits follows the processing chain shown
in figure 1, which indicates how new track hypotheses are formed from hits from
all available sensors without an intermediate stage of track formestinn hy
individual sensors. Track initiation from sensor tracks or with three-dimension-
al hits follow variants of the "Centralised Sensor by Sensor" processing chain
shown in figure 2!. Track maintenance follows variants of the "Centralised
Sensor by Sensor"” processing chain for all types of input. The principal
variations from figure 2 concern the type of gating applied to the sensor
inputs; this is dependant on the sensor data type.

The algorithm covers the 3-D tracking functions and the gating and association
of incoming data with the 3-D track projections, but excludes any single-sensor,
scan-to-scan correlation and track forming functions.

1.2 PHASES OF THE SDI BATTLE

The algorithm has been designed for birth-to-death tracking of ballistic
missiles, from launch all the way through to the terminal phase. Effort has been
concentrated, thus far, on the transition from boost to mid-course phases,
including the period of target proliferation during the post-boost phase.

1.3 INPUTS

The algorithm has been designed to accept any available sensor data with no
prior assumptions on the number or configuration of sensors. Sensor data may be
clustered or otherwise, and may be scan-to-scan correlated or otherwise.

1.4 OUTPUTS

The algorithm produces full three—dlmenslonal tracks of individual targets, of
clusters of targets, and of individual members of clusters where sufficient data
has been received to resolve them. Extensions are planned, but not currently
supported, to include target discrimination functions, and to provide extra-
polation of the tracks both forward and backward to yield aim-points and launch

parameters.
2 NOTABLE FEATURES

- the ability to handle any mix of sensor data, as described above.

1Figure 1 in attachment 4 of IDA Memorandum dated December 27th
from Gabriel Frenkel.
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- the ability to initiate full 3-D tracks from three uncorrelated 2-D
observations on a target from any sensors (even a single sensor provided
that its movement relative to the target is sufficient), and to prune
swiftly the rapid proliferation of false track hypotheses.

- the scalability of the architecture to any conceivable threat size, with
predictable growth with growth of the threat environment.

3 SENSOR ARCHITECTURE & THREAT SCENARIO

The algorithm, although originally concieved as a generic data fusion architect-
ure, has been developed in the context of the SDI. The scenario driving the
design has been that of a mass ballistic missile attack including many launchers
producing vast numbers of mid-course bodies (>10%). These have been assumed to
travel in clusters of up to a few hundred objects each.

The system has been designed to operate with any likely configuration and number
of sensors. The algorithm has been designed to take account of measurement
errors and biasses (including sensor own-position reporting, vointing accuracy.
and bearing resolution) but performance measurements have not been made.

Three kinematic models have been assumed for targets, a pure ballistic model for
the mid-course phase, a ballistic model with acceleration along the trajectory
for the boost phase, and a ballistic model with variable acceleration, pre-
dominantly along the trajectory for the post-boost vehicle. This variable
acceleration is included as a noise term in the kinematic model.

At present, tracking is on target position and motion only. Versions of the
design exist which include photometric parameters in the target state vector,
and it is planned to make use of these for target discrimination purvoses in the
future.

No specific assumptions have been made, to date, as to the nature. quantitv. or
pre-filtering of background clutter. ,

4 SENSCR MODEL/PROCESSING

In principal, the algorithm is not limited to operation with particular sensor:
types. The evolution of the design in the SDI context has directed concentration
towards operation with passive, focal-plane, IR sensors. It will overate with
both scanning and staring sensors, producing either geometric data only or ‘both
geometric and photometric data. Scan rates and frame rates may be fixed or-
variable.

The algorithm requires data to be supplied on at least: observation time, sensor
position, bearing of observed object in two orthogonal planes. No other limits
have been assumed on sensor signal processing capabilities.

5 TRACK INITIATION

5.1 TARGET TRACKS

Tracks are initiated directly in three-dimensional form even from un-correlated
2-D hits. They are initialised by association of any sensor reports not
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associated with existing tracks to form new-track hypotheses. These are tested
for realism and likelihood at every stage, with hypotheses failing either test.
being deleted. Association of three hits in a new-track hypothesis is suffici-
ent, in general, to allow its promotion to a full track.

There is no necessity to initialise the system with tracks handed over from
elsewhere following a cold-start. Provision for such hand-over could be added to
the algorithm without difficulty, and could reduce the settling-time of the
system under cold-start conditions.

5.2 CLUSTER TRACKS

All launch vehicles are assumed to produce clusters of mid-course bodies, thus
cluster tracks are generated for all boost-phase tracks. At this stage they have
a membership of one target, i.e. the booster itself. New tracks formed by
splitting during the post-boost phase are assigned as members of the cluster.

Cluster tracks are also formed later by association of a number of non-cluster-
member tracks all having near identical trajectory behaviour.

6 TRACK MAINTENANCE
6.1 DATA ASSOCIATION

A multiple gating approach is used for data association. Firstly, new data is
gated with the cluster tracks, using a simple rectangular gating strategy. A
two-level gating strategy is then applied to the data by target tracks belonging
to clusters with which the data is successfully associated. The first level
comprises a rectangular gate; successful association at this level leads to a
more stringent, ellipsoidal gate. Only data passing all stages succesfully is
used for track updating. '

6.2 STATE ESTIMATION

A Kalman filter technique is employed for target track state estimation.
Currently, this comprises a six-degree—of-freedom filter, tracking position and
velocity. Plans exist to extend the state vector to include aim-point, launch
point, and photometric parameters with appropriate filters.

A similar six-axis Kalman filter is used to maintain the cluster track
trajectory, and cluster extent. The cluster track also maintains its target-
track membership list.

6.3 TRACK PROMOTION/DEMOTION

Tracks are continuously monitored for validity. Pruning tests implemented and
-planned include: consistent and sensible track behaviour, behaviour of the error
co-variance with time, and continued updating with new sensor data. Consistent
failure of any of these tests would cause deletion of the track.

7 TRACK FILE MAINTENANCE

Currently not implemented.
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8 OUTAUT TO BM/C® USERS

Currently, the output of the algorithm is all the track state vectors, as they
are updated.

9 COMPUTATIONAL REQUIREMENTS

The algorithm has been designed to operate on a large, concurrent, message-
passing processing system, with the ability to distribute the system over a
number of platforms. The algorithm has been designed explicitly to maximise
processing parallelism. The number of processors required in such a machine
would probably exceed 1000, in a loosely-coupled architecture.

The algorithm has been developed with the Auto-G CASE tool, using the G
notation, with automatic code generation of Ada and the Ada-based SADMT language
developed by the IDA. Simulations have been run of part of the design coded in
SADMT on SUN 3 workstations.

10 CURRENT STATUS

The algorithm is in a concept proving stage, with the core part of the design
“having been completed in Auto-G. A portion of it, the target tracking process
has been converted to SADMT code.

Only limited performance optimisation has only been carried out.
11 PERFORMANCE MEASURES AND RESULTS

The target tracking process coded in SADMT has been run successfully in
simulations using the IDA SADMT Simulation Framework, demonstrating track
initiation and maintenance. Performance metrics have not been produced.

12 REPORTS

ORIGINAL PRESENTATION OF CONCEPT:- "An Object Oriented Approach To Data
Fusion"; Chapter 3, Section 3.5 of "Application Of Artificial Intelligence To
Command And Control Systems"; C. J. Harris (Ed); Peregrinus Press for the
Institution of Electrical Engineers.

INITIAL DESIGN OF ALGORITHM:- ASA Technical Report T88/001, dated 15t®
March 1988, produced for the SDIO as the final report of the original DoD SDIO
"contract SDIO84-87-C-0040, entitled "Demonstration Of Specification Methodology
For SDI Data Fusion".

DETAILED DESCRIPTION OF ALGORITHM:- ASA Technical Report T88/009, dated 15ttt
June 1988, produced for the SDIO as the First Phase report under the extension
to DoD SDIO contract SDIO84-87-C-0040, entitled "Data Fusion Architecture
Refinement And Simulation".

DEVELOPMENT OF SIMULATION AND PRESENTATION OF SIMULATION RESULTS:- ASA
Technical Report T88/014, dated 15t® December 1988, produced for the SDIO as the
Final Report of the extension to DoD SDIO contract SDIO84-87-C-0040.
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TRACKING ALGORITHM SUMMARY
SUBMITTER'S NAME: Robert B. Washburn, Jr. DATE: March 27, 1989
SUBMITTER'S COMPANY/ORGANIZATION: ALPHATECH, Inc.
'SUBMITTER'S PHONE: (617)273-3388 e SRR
ADDRESS OF SUBMITTER: 111 Middlesex Tumpike, Burlington, MA 01803
AUTHOR'S COMPANY/ORGANIZATION: ALPHATECH, Inc.
AUTHOR'S PHONE: (617) 273-3388
ADDRESS OF AUTHOR: 111 Middlesex Turnpike, Burlington, MA 01803

TITLE OF ALGORITHM: Multiple Information Set Tracking Correlator (MISTC)
SPONSOR: U.S. Amy Strategic Defense Command CSSD-H-SBY
DEVELOPER: ALPHATECH, Inc.

1. DESIGN SCENARIO

The algorithm design was driven by midcourse scenarios after RV dcpioyment and
before re-entry. Total threat size before data partitioning was assurried of the order of 103
objects, group size after data partiioning was assumed of the order of 100 objects. A range of
target densities were used for simulated scenarios in evaluation of group 'tracking and
correlation. The threat SDC-I-1 was used for evaluation of data partitioniné. All objects were
assumed to fly Keplerian trajectories without maneuvering. Models for space-based, airbomne,
and ground-based sensors were used to allow representation of SSTS, GSTS, AOS, and
MGBR. Handover track data could also be included. A variety of sensor architectures were
used. Registration, calibration, etc. was assumed to be performed prior to tracking; only

sensor noise errors were modeled.

2, SENSOR MODEL/PROCESSING
The sensor models included effects for Eiétcction (constant probability of detection
within the sensor FOV, Poisson uniform false alarms in the FOV), measurement resolution

(measurements within specified sensor resolution were combined — however, no algorithms
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were developed to handle this during the MISTC project), measurement accuracy (additive
Gaussian noise), and single sensor data processing (tracking in the single sensor's
measurement coordinates — e.g., angle scan-scan correlation and tracking). Attitude,
navigation, etc. errors and biases were not modeled. The sensor output to the tracking
algorithm included time, CSO indicator (however, not used in algorithms), measurement track,
measurement track error covariance, measurement track ID, measurement track probability
distribution of target class, measurement track time. The measurement track format varied

depending on the type of sensor (e.g., four dimensional angle and angle rate state for angle-

only sensors).

3. TRACK INITIATION
Tracks are initialized as 2-D tracks until multiple sensor correlations are made (then a 3-
D track is initialized). Handover data can be used if available, but is not neces"sary. Tracks are

processed individually and sequentially.

4. DATA ASSOCIATION

Data association was accomplished in two stages. The first stagé partitioned one scan
of LOS data from multiple sensors (two or three) into spatially separated groups. Then each
group of data was processed by the tracking/correlation algorithm. Within the group eight
diffefcnt data association algorithms were investigated, including three zero-scan, paifwise
approaches (row-column, row-column with backtracking, and optimal RELAX assignment)
and five N-scan, multiple hypothesis approaches (multidimensional, maximum, marginal
return, branch and bound, and three new algorithms by Tsaknakis). These algorithms are
described in [2]. The same correlation algorithm performed scan-scan and sensor-sensor
correlation. Hypotheses were scored by likelihood ratios. Ten branches were allowed per
target (five appeared adequate). The initial data partitioning was able to keep the group sizes
fairly small so that gating and pruning were sufficient to keep the number of hypotheses from
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5. STATE ESTIMATION
State estimation was accomplished using extended Kalman filters assuming Keplerian

motion between measurement times. The algorithms developed did not handle track spéwnin g.

6. TRACK FILE MAINTENANCE
The track file stored track time, track state type (e.g., 2-D or 3-D), mean, error
covariance, ID, probability distribution of target class (e.g., RV, balloon, light replica), list of

sensors correlated for that track and corresponding sensor track IDs.

7. OUTPUT TO BM/C3 AND USERS

Not applicable. Entire track file was assumed to be available to user systems.

8. PERFORMANCE MEASURES
Performance measures included number of true tracks generated, number of false tracks
generated, true track accuracy, track time to initialize, and life-time. These are detailed in the

report [1]. Performance bounds were not computed.

9. COMPUTATIONAL REQUIREMENTS

Computational requirements were obtained by partitioning realistic threat tapes to obtain
a distribution for group size and then running the trackin g/correlation algorithm on groups of -
different size to obtain empirical estimates of run-time. Run-times on a VAX 11/750 (using
VMS FORTRAN) were transiated to MEAS (million equivalent floating point additions per
second) and scaled to larger threat sizes. The details and results of this computational
evaluation are contained in [3]. The rough requirements were 90-120 MEAS per 10000 objects

for average throughput with about 80 MBytes for total memory.

10. NOTABLE FEATURES
The data partitioning algorithm proved effective in decomposing the sensor data into
groups small enough for uniprocessor computation. The Tsaknakis algorithms exhibited near-
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optimal performance with processing not much greater than the simplest algorithm.

Description of these algorithms and their tracking performance are contained in [2].

11. CURRENT STATUS
Algorithms have been implemented for sequential, off-line processing in FORTRAN
(VMS). Code was not optimized. Plans are to incorporate CSO tracking and resolution into

algorithms and to implement on different parallel processors.

12. REPORTS
All reports are unclassified with the usual SDI limitation on distribution and are available from

the U.S. Army Strategic Defense Command.

1. Catlin, R.A,, and R.B. Washburn, Evaluation Methodology for Multiple
- Information Set Tracking Correlator (MISTC), CDRL Item A009, ALPHATECH
Technical Report TR-385, Burlington, Massachusetts, March 1988.

2. Allen, T.G., L.B. Feinberg, R.O. LaMaire, K.R. Pattipati, H. Tsaknakis, R.B.
Washburn, W. Wren, P. Patterson, and T. Dobbins, Multiple Information Set
Tracking Correlator (MISTC) Final Report CDRL Item A007, ALPHATECH
Technical Report TR-406, Burlington, Massachusetts, September 1988.

37 Washbum, R.B., Multiple Information Set Tracking Correlator (MISTC)

Processing Requirements, CDRL Item A006, ALPHATECH Technical Report TR-
348-2, Burlington, Massachusetts, September 1988.
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TRACKING AIGORTTHM SUMMARY

SUBMITTER'S NAME: Mr. larry Filippelli DATE: 15 November 1988
SUBMITTER'S COMPANY/CRGANIZATION: Ball Systems En;meermg Divmlcm A
SUBMITTER'S PHONE: (703) 528-3337 BRI

ADDRESS OF SUBMITTER: 1100 Wilson Blwd. Suite 1710, Arlingtm Va. 22209
AUTHOR'S OOMPANY/ORGANIZATION: Same as. abcve

TITLE OF ALGORITHM: SDI Midcourse Tracker/Correlator Algonthm (TRC)
SFONSOR: Naval Research Laboratory (Dr. Kurt Askin, Mr: Steve McBurnett)

DEVELOPER: Ball Systems Engineering Division and Daniel H. Wagner, Associates

The following responses are offered in response to questions posed in the
summary related to the NRL Tracker/Correlator Algorithm under development by
Ball Systems Engineering Division (VERAC, Incorporated) and Daniel H. Wagner,
Associates. Since same responses could result in lengthy algoritim
descriptions that exist in our Algoritim Design Document, a reference to a
pertinent section or sections of the document is provided in lieu of a more
definitive answer. A copy of the document is enclosed for your convenience.

1. DESIGN SCENARTO

A. The algorithm design is. essentially scenario indeperdent except that it
takes advantage ofmefactthatobjectstezﬂtoclusterintospatially
inseparable groups in order to reduce the cambinatorial explosion' that results
from the high target density and potentially high sensor cbservation rate.

B. No assumptions about the threat size and density were made in the design,
however the algorithm's implementation on the SUN camputer provides upper
practical limits due to processor speed and memory availability. A future
implementation, currently in progress, on a parallel processor will extend the
utility of the algorithm to greater mmbers of cbjects..

C. Thealgoritlmassmessoneprepmsmgbythesensoxstorenoveclutter
It does however treat the case of false reports in its scoring formulae.

D.. The algorithm design is entirely independent of the sensor configurations.
E. No fntedvaluesareassmnedforsensorneasumrtemrsarﬂblases

‘Algorithm parameters may be adjusted to perm.t use of a full range of
postulated sensor errors.

F. Post Boost Veh:.cles (PBVs) are assumed to undergo randcnn accelerat:l.ons

during MIRVing. All Other cbjects are assumed to be in ballistic Keplerian
orbltsthnghmidco‘me [Seesections34and352arxiAppend.1xA]
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G. We have selected attributes which are independent of aspect for association
purposes. .

2. SENSOR I“D@MDE

A. SensorcmfiguzatlmsandparanetemamestablishedbymeNRLsystems
engineer. The algorithm makes no assumptions except those described in section
1.2.

B. The TRC receives the following information from the sensors:

time, sensor position and velocity, azimith and elevation and errors
IR only° irradiances at three wavelengths, S/N
Radar only: range, radar cross section

3. TRACK INTTTATTON

A. CQurently tracks are initiated by a boost-phase handover report assumed to
pmvid’e the é6-state estimate of an cbject (presumably a FBV) plus an 18-element
‘covariance matrix. Enhancements to the algoritim, presently under design, will
initiate tracks from 2-D and 3-D sensor reports.

B. Sensor reports are batch processed as indicated in Section 3.2.2.
4. DATA ASSOCTATION

A. Reports from each sensor scan are associated against current target space,
i.e. the algoritim is a report-to-track correlator.

B. The algorithm takes a multi-hypothesis approach.

C. Cambinatorial explosion is controlled in several ways:
1. local processors and clusters [Section 3.3. 1]
2. . within a cluster, report-to-map associations must pass a retention
test to be considered for inclusion in a scene (hypothesis) [Section
3.5.5]
3. onlyhypctheseswmchpassaretentlontestarepassedmforfumre
use. Others are pruned. [Section 3.8.4.4)

D&E. We do.not have a fixed depth hypothesis algorithm. Hypotheses are deleted
if they are below (in score) an input percentage of the score of the best
hypothesis. fmerelsalsoamax:mnnmmberofhypotheseswmchcanbesaved.

F. HyéoumesarescoredusngaBayesmnapprnadiarﬁtakangmtoaccamta
probability of detection, probablllty of false alarm, false and new target
densities and. report-to-map association scores. ([Section 3.8.4.2 and 3.8.5]

G. Aheuristlcsearchalgontmnlsusedtofomxlatethehypcthes&s The
algorithm employs knowledge about target space and a key assumption that no two
reports in a sensor scan were generated by the same target. [Section 3.8.4.3)
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H.. Tracks are spawned as described in Section 3.8.4.3 figure 3.8-2.. Target
maps are merged as described in Section 3.11.

5. STATE ESTIMATTON

A.- 'meappmadnforstatevectorestmatlmforatrackisdscnbedm—
Section 3.10.and Appendix D.

B. The state vector is a 6-dimensional position/velocity vector‘ plus
covariance matrix plus the target temperature estimate and . its. associated
exrror.

C. The algorithm uses a Kahlman filter with equations of motion based on the
modified Euler method. The dynamical model is described in Appendix A.

D. For information on spawning, track scoring and pruning see Section 3.14 as
well as previocusly referenced sections on report-to-map association and. scene
scoring. _

6. TRACK FITE MATNTENANCE

As above, see Section 3.14. At each periocdic snapshot, constructed track
camplex data are cutput to the track file to update the state estimates. for all
tracks. CICs which are not cutput have been deleted fram the track file. In
the NRL TSS, the track file data base will be maintained by a separate CSCI.
Output CICs will include a flag which indicates if the cbject is a FBV.

7. CUTPUT TO C3 _AND USERS

A. Snapshotsofthecnrrentstateestmateofobjectswhlcheameeda
confidence (CIC weight) threshold are cutput to the track data base. [Section
3.15.3] :

B. Data are output periocdically, (nominally every 12 seconds). The snapshot
mtervalcanbevarledbydlam;mganmltparaneter

8. PERFORMANCE MEASURES

A. The algorithm is measured in four areas: trac}dng, target .courxt,
correlation and execution time. Please refer to the Test Bed Design Document
(Enclosed) for a detailed description of all measures of perfonnance ’

B. Weaz:enctusingmax:mml:kelmoodestimatmnarddonothavea
theoretical performance measure.

9. COMPUTATTONAL, REQUIRFMENTS
A. 'nnghputandmemoryrequlrements nmehavebeenastablished
B. 'nnghp.xtismeasm'edasmmberofzeportsprocssedperseoorxi wherea

report is a single abservation of a target or unresolvable group of targets by
a sensor.
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C. The algoritim is implemented on a SUN computer in FORTRAN.

D. Results can be considered scalable on a glcbal, but not a local basis.
That is, ocbjects franeadxmissileareccrslderedanipmseduﬂepemently
of cobjects from cother missiles. Within the component clusters of a local
processcr, the problem scales non-linearly with the density of the targets.
Problem should scale linearly with the mumber of missiles provided each missile
produces similar target densities.

E. The results to date are empirical based on simple target scenarics.
F. No camputaticnal performance bourds have been imposed at this time.
10. NOTARBIE FEATURES

. The cambinatorial explosion resulting from high target densities and report
rates is limited by clustering and use of retention thresholds.

B. Constructed Track Complexes give a useful output to other battle manager
functions. These are a set of maps judged to be alternate representations
(under different report-to-track correlation hypotheses) of the same target.

C. Hierarchical algoritim architecture is designed for eventual parallel
processing.

D. Target non-kinematic attrilutes are processed and associated. O.Jrrem:ly
the algorithm uses temperature derived from irradiance measurements.

1l. CURRENT STATUS

A. A secord generation algorithm has been completed and is in the testing
phase. It has been installed at NRL and IANL.

B. . Performance optimization is currently being investigated.

C. Hardware has not been cptimized for this algoritim.

D. Future plans include:
o exhaustive testmg and behavior analysis under stressing scenarios
o com:imed enhancements underway or proposed: |

track initiation without handover

improved PBV motion models

use of color indices as association attributes

dynamic thresholding

dynamic new and false target density values for scene scoring
“improved report-to-map assigrment scheme for accelerated processmg

(monotonic logical grid)
- improved scene processor
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- improved scene processor
- parallel implementation on Butterfly

12. REPORIS

Relevant algoritim description docauments are enclosed. Performance testing
reportsampaﬂkqowpleﬁmoft&stirgaxﬁwﬂlbeavaﬂablefrmnr. Rurt
Askin at NRL or Mr. larry Filippelli at Ball Systems Engineering Division.
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 DEVELOPER:, T~ Go#schalk (Caltch)and R. Yeuns (TPL)
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(Complete as appropriate.)

NOTES & INSTRUCTIONS

(The Summary/Abstract of the algorithm should be limited to a half
of a page. The basic answers to the questions below should be
limited to 3 pages. Additional information, referenced to the
section numbers, whould be included in a separate appendix that
should be limited to four pages. Classified information should be
included in a separate supplement. The total information including

_Abstract/Summary, basic answeres, appendix and classified supplement

shoulld not exceed eight pages. If some of the algorithms or
details are proprietary, indicate what is proprietary and discuss
only the non-proprietary aspects.)

ABSTRACT /SUMMARY
(Describe, in general terms, how the algorithm works and if
applicable provide a high level flow diagram.)

1. CONTEXT :
What processing chain characterize your algorithm? (See
Figs. 1-4.) VWhat functions within the chain are covered by your
algorithm, e.g., Track Initiation, Track Maintainence, etc? To what
phase(s) of SDI is your algorithm applicable - Boost, Post-Boost,
Midcourse, Terminal? What are your inputs, e.g. s1ng1e sensor or
multiple sensors, clustered data or not clustered data, etc? What
are your outputs, e.g. 2-d tracks or 3-d tracks, launch parameters?

2. NOTABLE FEATURES
(List any features that distinguish the algorithm.)

3. SENSOR ARCHITECTURE & THREAT SCENARIO '

( Characterize the scenario that drives the algorithm design. What
is the threat size and density? Whar are the assumpt1ons about
background clutter? Is all the clutter removed prior to tracking?
What is the constellation size and orbit? What are the measurement
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Simulation88 Tracking Mode¢l

Thomas D. Gostschalk

Califomia Institute Of Techaology
35648
Pasadena, CA 91125, 818-356-6671

ABSTRACT

This oote describes the tracking module for Simulation88 - a boost/post-boost
simulation of SDI functions for an SS18/ASAT threat scenario performed on the Mar-
kII1 hypercube. Tbe simulation involves a number of separate tasks (enviromnent geu-
eration, seasing, tracking and battle planning) each running oa separate subcubes of
the MarkIll hypercube. Within a given subcube, the particular SDI task is dooe in a
concurrent fashion. Communicatious among subcubes are done asynchronously. The
Sim88 tracking task involves separate subcubes for sensing and trucking, wilh the
tracking task of an individual subcubeftracker in tum divided into 2D mono tracking
(using only data from a single sensor) and 3D precision tracking (using 2D aniono
tracks from itself and an additional tracker/subcube). While the details of the present
tracker are rather tightly tied to specifics of the Sim88 threat model, the overall coan-
current tracking prescription can be generalized to deal with arbitrary threwt scenarios,
and modifications along these lines have been begun.
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Context

The tracking model for Simulation88 involves eight separate subcubes of the MarkIIl hypercube,
performing MEO and GEO sensing and tracking tasks for boost and post-buost phases oa uiulli-target.
scenarios. In barest t